Direct observations of thermal fluctuations at sub-shot noise levels

青木 健一郎 慶應義塾大学 自然科学研究教育センター,日吉物理学教室

熱場の量子論とその応用 2012

T. Mitsui, K.A., *Phys. Rev.* **E** 80, 020602(R)-1-4 (2009) *Phys. Rev.* **E 86**, 011602 (2012) arXiv:1206.3828

- 1. Thermal fluctuations
- 2. Liquid surface fluctuations and their properties
- 3. Shot noise
- 4. Noise reduction
- 5. Surface height fluctuation measurements
- 6. Surface inclination fluctuation measurements
- 7. Discussion

Thermal fluctuations

- Thermal fluctuation phenomena: Brownian motion, liquid surfaces, solid surfaces, · · ·
- Thermal fluctuations are ubiquitous!
- Directly observe thermal fluctuations of common materials in an everyday environment. ⇒ Fluctuations are small! ← noise!
- Measure at hitherto unseen low noise levels
 - □ Test theory to previously unachieved precision.
 - □ Observe new phenomena.

Liquid surface fluctuations — "Ripplons"

- Typical thermal fluctuation phenomena which is relatively well understood.
- Liquid surfaces fluctuate thermally. (von Schmoluchowski, 1908; Mandelstam, 1913)
- Experimentally observed effectively as gratings. (Katyl, Ingard, 1967) \leftarrow Will not work for viscous liquids
- $\bullet\,$ Size of fluctuations $\sim\,$ atomic scale

 $\langle z^2 \rangle \simeq \frac{k_B T}{4\pi\sigma} \log \frac{\sigma}{g\rho\ell^2} \sim (0.4 \,\mathrm{nm})^2 \quad (\sigma: \text{ surface tension}, \ \ell: \text{ molecular scale})$

Properties of thermal surface fluctuations

- Surface fluctuation properties determined from hydrodynamics.
- Interesting fundamental physics.
- Spectral function: (Bouchiat, Meunier, 1971) \leftarrow Analytic, but behavior not simple. (ρ : density, σ : surface tension, η : viscosity)

$$P(k,\omega) = \frac{k_B T k \tau_0^2}{\pi \omega} \operatorname{Im} \left[(1+s)^2 + y - \sqrt{1+2s} \right]^{-1}$$
$$s \equiv -i\omega\tau_0, \qquad \tau_0 \equiv \frac{\rho}{2\eta k^2}, \qquad y \equiv \frac{\sigma\rho}{4\eta^2 k}$$

simple

5

- Measure surface fluctuations directly.
- Characterize the fluctuations \Rightarrow spectra.
- Fluctuations too small to examine precisely. \leftarrow Noise, esp. shot noise

Shot noise

- Essentially quantum noise. Randomness of photon arrival times.
- Photoconversion \Rightarrow noise in current

 $\langle (\Delta I)^2 \rangle = 2 e I \, \Delta f$

- White noise (*f* independent).
- Unavoidable in photoconversion (*cf.* gravitational wave detection).
- Reduce shot noise \Rightarrow Squeezed light ($\sim 1/2$ so far), quantum non-demolition(?).

Noise reduction

- A measurement: $D_1 = S + N_1$, S: signal, N_1 : noise
- S has no known periodicity (eg. thermal fluctuations).
- Power spectrum: $(\tilde{D}_1$ Fourier transform of D_1)

 $\langle |\tilde{D}_1|^2 \rangle = \langle |\tilde{S}|^2 \rangle + \langle |\tilde{N}_1|^2 \rangle$ Impossible to separate S, N_1 even in theory

Noise reduction

- A measurement: $D_1 = S + N_1$, S: signal, N_1 : noise
- *S* has no known periodicity (*eg.* thermal fluctuations).
- Power spectrum: $(\tilde{D}_1$ Fourier transform of D_1)

 $\langle |\tilde{D}_1|^2 \rangle = \langle |\tilde{S}|^2 \rangle + \langle |\tilde{N}_1|^2 \rangle$ Impossible to separate S, N_1 even in theory

• Make multiple measurements: $D_{1,2} = S + N_{1,2}$

 $\langle \overline{\tilde{D}_1} \tilde{D}_2 \rangle \to \langle |\tilde{S}|^2 \rangle \quad , \qquad \mathcal{N} \to \infty \qquad \text{relative error} \sim 1/\sqrt{\mathcal{N}}$

Uncorrelated noise statistically reduced.

Comments on the noise reduction method

- Simple! at least in theory
- Principle *not* limited to optical or surface measurements.
- Noise needs to be uncorrelated. \leftarrow crucial
- Any uncorrelated noise eliminated: Shot noise, AM noise, amplification noise, FM noise, directional fluctuations, ···.
- In practice, 10^{-3} reduction achieved.

Practical limitations of the noise reduction method

- Always applicable, but efficacy depends on the properties of the signal.
- Noise elimination statistical.
- Reltative reduction: $\sim 1/\sqrt{\mathcal{N}}$.
- Given Δf (frequency resolution), $\mathcal{N} = \Delta fT$. (*T*: total measurement time).
- $\Delta f = 1 \text{ MHz}$, noise reduction factor $10^{-3} \Rightarrow T = 1 \text{ s}$.
- Roughly speaking, need many periods of the "wave component" for the method to be effective.

青木 健一郎

Surface height fluctuation measurements

Basic setup

- Michelson interferometer, except for photodetection and data processing.

 applicable to any Michelson measurement
- Laser: 532 nm wavelength, 0.5 mW at sample, reference.
- Sample size: 2.2 mm, beam diameter: 0.96 μ m.
- Sample surface reflectivity~few %. (water: 2%, oil: 4%)

Observed spectrum (summed over k, b: beam diameter):

$$S(f)=2\langle \tilde{a}_0(\omega)^2\rangle=2\int_0^\infty dk\,ke^{-b^2k^2/8}P(k,2\pi f),\quad a_0\text{: average height}$$

- Uniquely determined, given the liquid properties (ρ, σ, η) and b.
- Sample size: long distance cutoff.
- Beam size: short distance cutoff (averages within the beam spot).

• Perfect agreement for water. Almost perfect for ethanol, very slight deviations at high frequencies.

Oil surface fluctuations: $T = 21, 30, 59, 74 \,^{\circ}\text{C}$. Good agreement, slight deviation at high frequencies. Mismatch larger for smaller T. Deviation: $S_{\rm h}(f) \sim f^{\alpha}$, $\delta \alpha = C \exp(U/k_B T)$, $U = 7 \,\text{kJ/mol} \sim$ latent heat.

Quantum Optics

- Single light source:
 - □ Classically, difficult to imagine uncorrelated noise from a single source.
 - \Box Photon arrival times are random in the coherent state.
- Photons partitioned at the mirror \Rightarrow shot noise in the 2 detectors uncorrelated.
- Will *not* work with squeezed light (shot noise in two measurements correlated).

Surface inclination fluctuation measurements

- Basic concept: Surface = optical lever.
- Measure the fluctuation spectrum of the inclination.
- Dual PD for an inclination measurement.
- 2×Dual PD for correlation measurement \Rightarrow Noise reduction

Observed spectrum:
$$S(f) = \int_0^\infty dk \, k^3 e^{-b^2 k^2/8} P(k, 2\pi f)$$

• Why? $\alpha(t)$?

Discussion

- Directly measured surface thermal fluctuation spectra of ordinary materials at ordinary temperatures (simple liquids, biological materials, complex fluids, polymers, ...)
- Modification to standard measurements minimal \Rightarrow broad area of application
- Noise reduction: not limited to optical, surfaces, thermal fluctuations.
- Achieved 10^{-3} reduction or more.
- Small power $\sim 0.5 \,\mathrm{mW}$, small sample size $\sim \mathrm{few} \ \mu\mathrm{m}$, short measurement time $\sim \mathrm{few} \ \mathrm{sec.} \ \leftarrow \mathrm{wide} \ \mathrm{applicability}$

- To do:
 - □ Understand surface fluctuation properties of various materials.
 - □ Applications in other areas, other than optical, surfaces measurements.
 - \Box More to come...