Equilibration of Scalar Fields in an Expanding System

Akihiro Nishiyama (Kyoto Sangyo University) Collaboration with Yoshitaka Hatta (University of Tsukuba)

> Aug 22nd, 2012. arXiv:1206.4743

Relativistic Heavy Ion Collision at RHIC and LHC

Success of nearly ideal hydrodynamics after thermalization. **Early Thermalization** of gluons (0.6-1fm/c)! (<u>RHIC and LHC</u>) Kolb and Heinz (2002), Hirano et al. (2010)

Comparative to formation time of partons (1/Qs~0.2fm/c) Semi-Classical Boltzmann eq. should not be applied, since 2-3fm/c is predicted for $gg \rightarrow gg$, $gg \rightarrow ggg$ (Boltzmann).

Decoherence: Muller, Schafer (2006)

Baier, Mueller, Schiff, Son (2001 and 2011)

New method is needed.

Quantum nonequilibrium processes based on field theory

Application of Kadanoff-Baym eq. to early thermalization of gluons.

Purpose of this talk

Introduction of time evolution equation for classical field and Kadanoff-Baym equation for quantum fluctuation in O(N) scalar model in an expanding metric.

To show particle production and equilibration in Numerical Analyses.

Comparison of expanding and nonexpanding system.

Rest of this

- Time Evolution Equation I, II
- Initial condition
- Comparison of expanding and nonexpanding system
- Summary and Remaining Problems

Time Evolution Equation I

Action of scalar O(N) model

$$S = \int d^{4}x \sqrt{-g} \left[\frac{g^{\mu\nu}}{2} \partial_{\mu}\varphi_{a}\partial_{\nu}\varphi_{a} - \frac{m^{2}}{2}\varphi_{a}\varphi_{a} - \frac{\lambda(\varphi_{a}\varphi_{a})^{2}}{4!N} \right]$$

$$a=1,...,N$$

$$g=\text{diag}(1, -\tau^{2}, -1, ...)$$
Interaction term
$$\phi_{a}(t, x) = \langle \hat{\varphi}_{a}(t, x) \rangle$$

$$\left[\partial_{\tau}^{2} + \frac{1}{\tau} \partial_{\tau} + m^{2} + \frac{\lambda}{6N} \phi^{2}(\tau) \right] \phi(\tau) = 0$$
Or effect of fluctuations

Damping of classical field for an expanding system

Time Evolution Equation II

 Kadanoff-Baym equation: Quantum evolution equation of 2-point Green's function (fluctuations). statistical (distribution) and spectral functions

$$F_{ab}(x,y) = \frac{1}{2} \langle \{ \tilde{\phi}_a(x), \tilde{\phi}_b(y) \} \rangle$$

$$F(\tau,\tau',p) \approx \frac{1}{2m_{\perp}\sqrt{\tau\tau'}} \cos m_{\perp}(\tau-\tau') (2n_p+1)$$

$$\tau,\tau' \to \infty$$

$$F(\tau,\tau',p) \approx \frac{1}{m_{\perp}\sqrt{\tau\tau'}} \sin m_{\perp}(\tau-\tau')$$

$$F(\tau,\tau',p) \approx \frac{1}{m_{\perp}\sqrt{\tau\tau'}} \sin m_{\perp}(\tau-\tau')$$

$$m_{\perp} = \sqrt{m^2 + p_{\perp}^2}$$

$$\begin{pmatrix} \left(-G_{0}^{-1}+\Sigma_{loc}\right)F(x,y) = \int_{0}^{y^{0}} dz \Sigma_{F}(x,z)\rho(z,y) - \int_{0}^{x^{0}} dz \Sigma_{\rho}(x,z)F(z,y) \\ \left(-G_{0}^{-1}+\Sigma_{loc}\right)\rho(x,y) = \int_{x^{0}}^{y^{0}} dz \Sigma_{\rho}(x,z)\rho(z,y) & \text{Memory integral} \\ G_{0}^{-1} \equiv -\frac{\partial^{2}}{\partial\tau^{2}} - \frac{1}{\tau}\frac{\partial}{\partial\tau} + \frac{1}{\tau^{2}}\frac{\partial^{2}}{\partial\eta^{2}} + \nabla_{\perp}^{2} + m^{2} & \boldsymbol{\Sigma}=\text{Self-energies} \\ \text{Self-energies: local } \boldsymbol{\Sigma}_{loc} \text{ mass shift, nonlocal real } \boldsymbol{\Sigma}_{F} \text{ and imaginary part } \boldsymbol{\Sigma}_{F} \end{pmatrix}$$

Merit

 Field-Particle Conversion: Particle production from classical field.

(Parametric resonance) +

• Collision of particles \rightarrow Bose-Einstein distribution

binary

Finite decay width

• Off-shell effect: Memory effects and $\rho(p^0, p)$ finite spectral width

binary collisions (2-to-2) \rightarrow Rapid Change of distribution functions (Lindner and Muller 2006) + 3-to-1 \rightarrow entropy production + chemical equilibrium. Demerit Numerical simulation needs much memory of computers.

Initial condition

Initial condition: Classical field with vacuum quantum fluctuations (Color Glass Condensate ?)

$$\phi_a(\tau) = \phi(\tau)\delta_{a1}$$
 $\phi(\tau_0) = \sqrt{\frac{6N}{\lambda}}\sigma_0$ $\lambda = 10$
 $N = 4$ m/ σ 0=0.1

 $F_{ab} = \operatorname{diag}(F_{\parallel}, F_{\perp}, \dots, F_{\perp})$ vacuum

We assume homogeneity in space.

Collision term

Our results (collaboration with Y. Hatta): Quantum collision term.

Summation of Next-to-Leading Order of 1/N expansion. This approach covers all evolution of F from O(1) to O(λ^{-1})

Classical Statistical Approximation

 $n_p \sim 1/\lambda$, at late time This approximation is good in the case of dense system FF>>pp (Weakly coupled). But if FF~pp (Normal coupling), the difference appears.

Comparison of Nonexpanding and Expanding systems (2+1 dim)

The above term + source induced amplification

Nonexpanding

 $\sigma_0 F_{\parallel}(t, t, p_T, p_z)$

 $F_{\parallel}(au, au,p_T,p_\eta)$

Quantum evolution

t/t0=5-----

Nonexpanding

 $\sigma_0 F_{\parallel}(t,t,p_T,p_z)$

$$F_{\parallel}(\tau, \tau, p_T, p_\eta)$$

Quantum evolution

t/t0=20 -----

Nonexpanding

 $\sigma_0 F_{\parallel}(t,t,p_T,p_z)$

 $F_{\parallel}(\tau,\tau,p_T,p_{\eta})$

Quantum evolution

t/t0=40 -----

Nonexpanding

 $\sigma_0 F_{\parallel}(t,t,p_T,p_z)$

Expanding $F_{\parallel}(\tau, \tau, p_T, p_\eta)$

Quantum evolution Nonexpanding

 $\sigma_0 F_{\parallel}(t, t, p_T, p_z)$

 $F_{\parallel}(\tau,\tau,p_T,p_{\eta})$

Quantum evolution

t/t0=80 -----

Nonexpanding

 $\sigma_0 F_{\parallel}(t,t,p_T,p_z)$

$$F_{\parallel}(\tau, \tau, p_T, p_{\eta})$$

Quantum evolution

t/t0=100 -----

Nonexpanding

 $\sigma_0 F_{\parallel}(t,t,p_T,p_z)$

$$F_{\parallel}(\tau, \tau, p_T, p_{\eta})$$

Quantum evolution

t/t0=120 -----

Nonexpanding

 $\sigma_0 F_{\parallel}(t,t,p_T,p_z)$

$$F_{\parallel}(\tau, \tau, p_T, p_{\eta})$$

Quantum evolution

t/t0=140 -----

Nonexpanding

 $\sigma_0 F_{\parallel}(t,t,p_T,p_z)$

$$F_{\parallel}(\tau, \tau, p_T, p_{\eta})$$

Late-time distribution function np

Classical statistical approximation: Neq~ T/p-1/2

Summary

- We have considered the Kadanoff-Baym approach to thermalization of O(N) scalar fields from initial background classical field with longitudinal expansion in 2+1 dimensions.
- Field-particle conversion occurs when we include effects of fluctuation. Then classical field damps rapidly due to expansion of the system compared with nonexpanding system.
- In both nonexpanding and expanding system, late-time Boltzmann tails are realized in Quantum evolution.
- In classical statistical approximation, the late-time distribution is not Bose-Einstein type (Normal coupling)

Remaining problems

- Application to non-Abelian gauge theories in expanding system.
- Initial condition in an expanding system (Color Glass Condensate with vacuum fluctuations).
- Renormalization procedure in an expanding system.
- Tuning of program codes.

F

Fig. 4. Time evolution of the statistical function at strong coupling $\lambda = 10$ for three different values of n_T : $n_T = 0$, $n_T = 8$, $n_T = 16$ (from top to bottom).

Relativistic Heavy Ion Collision at RHIC and LHC

Nonequilibrium dynamics of gluons

) () (

Late-time distribution function (Quantum evolution)

Relativistic Heavy Ion Collison at RHIC and LHC

Time irreversibility

Symmetric phase $\langle \Phi \rangle = 0$

	λΦ ⁴	O(N)	SU(N)
Exact 2PI (no truncation)	×	×	×
Truncation	NLO of λ	NLO of 1/N	LO of g ²
LO of Gradient expansion H-theorem	Ο	Ο	O (TAG)

Numerical Simulation for KB eq.

Symmetric phase $\langle \Phi \rangle = 0$

	λΦ ⁴	O(N)	SU(N)
Truncation	NLO of λ	NLO of 1/N	LO of g ²
Others' Code	1+1 dim 2+1 dim 3+1 dim	1+1 dim 3+1 dim	?
Our Code	1+1 dim 2+1 dim 3+1 dim	1+1 dim 2+1 dim 3+1 dim	2+1 dim 3+1 dim

Evolution of classical field and fluctuation

Reproduction of J. Berges, K. Boguslavski, S. Schlichting, hep-ph 1201.3582.

Case without collision term

Parametric Resonance instability Fluctuation $\ddot{y} + \omega^2(t)y = 0$ periodic $\omega(t+T) = \omega(t)$ $y(t) = c^{t/T}\Pi(t)$ c > 1 $\omega^2(t) \sim \phi^2(t) + \dots$ Flat

