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√sNN=200 GeV

Success of nearly ideal hydrodynamics after thermalization.
Early Thermalization of gluons (0.6-1fm/c)! (RHIC and LHC)

Kolb and Heinz (2002), Hirano et al. (2010)

Quantum nonequilibrium processes based on field theory 

Application of Kadanoff-Baym eq.
to early thermalization of gluons.

Baier, Mueller, Schiff, Son (2001 
and 2011)

Formation of Quark-Gluon Plasma (QGP) 

Comparative to formation time of partons (1/Qs~0.2fm/c)
Semi-Classical Boltzmann eq. should not be applied, 
since 2-3fm/c is predicted for gg→gg, gg→ggg (Boltzmann).

Decoherence: Muller, Schafer (2006)

New method is needed.



Rest of this 
talk• Time Evolution Equation I, II
• Initial condition
• Comparison of expanding and nonexpanding 

system
• Summary and Remaining Problems

Introduction of time evolution equation for classical field and 
Kadanoff-Baym equation for quantum fluctuation in O(N) scalar 
model in an expanding metric. 

To show particle production and equilibration in Numerical Analyses.

Comparison of expanding and nonexpanding system.

Purpose of this talk



Time Evolution Equation I

Action of scalar O(N) model

Interaction term
a=1,…,N

Or effect of 
fluctuations

Equation of motion of classical field

Damping of classical field for an expanding system

a

g=diag(1, -τ2, -1, …)



Time Evolution Equation II
• Kadanoff-Baym equation: Quantum evolution 

equation of 2-point Green’s function (fluctuations).

Boson

statistical (distribution) and spectral functions

Σ=Self-energies

Memory integral

Self-energies: local             mass shift,  nonlocal  real              and  imaginary part   



• Field-Particle Conversion: Particle production from 
classical field.

• Collision of particles → Bose-Einstein distribution

• Off-shell effect: Memory effects and 
finite spectral width

binary collisions (2-to-2) → Rapid Change of 
distribution functions (Lindner and Muller 2006)   + 
3-to-1 → entropy production + chemical equilibrium.

Merit

binary Finite decay width

Demerit
Numerical simulation needs much memory of computers.

X

(Parametric resonance) +



m/σ0=0.1

Initial condition: Classical field with vacuum
quantum fluctuations (Color Glass Condensate ?)

vacuum

Initial condition

We assume homogeneity in space. 



Collision term

Σ=

+・・・+
x x x x xx

Source induced amplification.

Normal collision term.

Summation of Next-to-Leading Order of 1/N expansion. This 
approach covers all evolution of F from O(1) to O(λ-1)

Our results (collaboration with Y. Hatta): Quantum collision term. 



Classical Statistical Approximation

ΠF =

Berges et al. (2012)

Gelis et al. (2012)

Neq~T/p-1/2

=FF-(1/4)ρρ

For example

This approximation is good in the case of dense 
system FF>>ρρ (Weakly coupled). But if FF~ρρ 
(Normal coupling), the difference appears.

F~(1/τ)n_p, ρ~1/τ
n_p~1/λ,at late time



Evolution of classical field

φ(t)/σ0
1/2

t/t0
x x

… …

φ(τ)/σ0
1/2

τ/τ0

τ-1/3

x x
+

The above term + source induced amplification

Comparison of Nonexpanding and 
Expanding systems (2+1 dim)

Nonexpanding Expanding



Evolution of Green’s functions F
Nonexpanding Expanding
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Evolution of Green’s functions F
Nonexpanding Expanding
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Pz=Pη/τ
pη

2/τ2

Quantum evolution



Late-time distribution function np
Nonexpanding Expanding

Classical statistical approximation: Neq~ T/p-1/2

t/t0=150 τ/τ0=150

np np



• We have considered the Kadanoff-Baym approach to 
thermalization of O(N) scalar fields from initial 
background classical field with longitudinal expansion 
in 2+1 dimensions.

• Field-particle conversion occurs when we include 
effects of fluctuation. Then classical field damps rapidly 
due to expansion of the system compared with 
nonexpanding system.

• In both nonexpanding and expanding system, late-time 
Boltzmann tails are realized in Quantum evolution.

• In classical statistical approximation, the late-time 
distribution is not Bose-Einstein type (Normal coupling)

Summary



• Application to non-Abelian gauge theories in 
expanding system.

• Initial condition in an expanding system 
(Color Glass Condensate with vacuum 
fluctuations).

• Renormalization procedure in an expanding 
system.

• Tuning of program codes. 

Remaining problems
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Late-time distribution function 
(Quantum evolution)

Nonexpanding Expanding

εp

np

t/t0=150 τ/τ0=150



Relativistic Heavy Ion Collison 
at RHIC and LHC

Nonequilibrium 
phase

Quark-Gluon Plasma
Mixed phase

Hadron gas

Freeze-out

τeq=0.6-1fm/c
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Time irreversibility

Exact 2PI (no 
truncation)

Truncation

LO of 
Gradient 
expansion
H-theorem

λΦ4 O(N) SU(N)

NLO of λ NLO of 1/N LO of g2

Symmetric phase 〈Φ〉=0

× × ×

△ △ △(TAG)

○ (TAG)○ ○



Numerical Simulation for KB eq.

Truncation

λΦ4 O(N) SU(N)

NLO of λ NLO of 1/N LO of g2

Symmetric phase 〈Φ〉=0

Our Code
1+1 dim 
2+1 dim 
3+1 dim

1+1 dim 
2+1 dim 
3+1 dim

2+1 dim 
3+1 dim 

Others’ 
Code

1+1 dim 
2+1 dim 
3+1 dim

1+1 dim

3+1 dim
?



Evolution of classical field and fluctuation
Reproduction of J. Berges, K. Boguslavski, S. Schlichting, hep-ph 1201.3582.

Case without collision term

φ~τ-1/3 τ/τ0

φ(τ)/φ(0)



Fluctuation

p_eta=2σ0τ0

ω2(t)~φ2(t)+…

Parametric Resonance instability

Flat

exp(γ0τ2/3 )Curved



Next page: Our results

Berges 2004.

(Flat metric)
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