Baryon number probability distribution in the presence of the chiral phase transition

<u>森田健司</u>

(Yukawa Institute for Theoretical Physics, Kyoto University)

In collaboration with

V.Skokov (BNL), B. Friman (GSI), K. Redlich (Wroclaw)

- 1. Fluctuations and probability distribution
- 2. Example : Laudau Theory
- 3. Canonical partition function & Complex μ
- 4. Probability distribution P(N) / Cumulants from P(N)
- 5. Results from QM model+FRG

22 Aug 2012

Fluctuations of conserved charges

GC ensemble : specified by (T, μ)

22 Aug 2012

Chart

Example : Landau Theory (up to σ^4)

Thermodynamic Potential (below T_c)

$$-\frac{\Omega(T,\mu)}{VT^4} = 2d\cosh(\mu/T) - \frac{1}{4}|a|^2(T,\mu)$$
$$\Omega_0_{a(T,\mu) = -\left[3 - \frac{T}{T_c} - 2\cosh(\mu/T)\right]}^{\mu/T} \simeq \frac{1}{T_c} \frac{T - T_c}{T_c} + \frac{\mu^2}{T^2}$$

Periodic in μ_I / T

Parameters:

- T_c =0.15 GeV
- $d=\pi^4/30$ (massless gas)
- $T/T_c = 0.98$
- μ_c =20.8 MeV
- <N>(μ = μ_c) = 11.4 for V=30 fm³

Example : Landau Theory

How to compute P(N)

Need : Canonical Partition Function Z(T,V,N)

$$P(N;T,\mu,V) = \frac{Z(T,V,N)e^{\beta \mu N}}{\mathscr{Z}(T,V,\mu)} = 1$$
Fugacity
$$\lambda = e^{\mu/T}$$
Shift of peak
Enhance large N

Coefficients of Laurent Expansion

$$Z(T,V,N) = \frac{1}{2\pi i} \oint_C d\lambda \frac{\mathscr{Z}(T,V,\lambda)}{\lambda^{N+1}}$$

Special case : C contains $|\lambda|=1$

$$Z(T,V,N) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta e^{-i\theta N} \mathscr{Z}(T,V,\theta) \qquad \theta = \frac{\mu_I}{T}$$

Complex chemical potential

Analytic Structure of Ω in the thermodynamic limit (cf: Stephanov '06 in RM model)

= Different Riemann sheets connected by "Stokes Boundary" $Re\Omega_0 = Re\Omega_1$

 $C_{1,3}$: Use Ω_0 as integrand \rightarrow give Z_0 s.t. $\sum \lambda^N Z_0(N) = \exp[-\beta \Omega_0]$ C_2 : Use Ω as integrand \rightarrow give Z s.t. $\sum \lambda^N Z(N) = \exp[-\beta \Omega]$

22 Aug 2012

Comparison of P(N)

MF : Analytic solution exist

Critical : Numerical Integration (Work only |N|<60)

Different behavior at large N

Common structure btw. MF and Critical at small N

Large N Shrink (Broadening) in Critical (MF)

Saddle Point : Critical case

$$Z(T,V,N) = \frac{\beta}{2\pi i} \int_{c_{\mu}} d\mu e^{VT^{3}f(\mu)} f(\mu) = 2d\cosh(\mu/T) + \frac{1}{4}|a|^{2-\alpha}(T,\mu) - \frac{N\mu}{VT^{4}}$$

$$f'(\mu)|_{\mu=\mu_s}=0 \quad \Longrightarrow \quad N=-\left(rac{\partial\Omega}{\partial\mu}
ight)_{T,V}$$

Steepest descent path indicates contribution from cuts....

Cumulants from P(N)

Critical case

Susceptibility : |N| < 50 dominates

Kurtosis : Larger N important

No criticality seen, due to lack of

- Large N part of P(N)
- Sufficiently large volume

However, going to larger volume makes large N/V calculation more difficult

FRG approach to P(N) in QM model

$\blacksquare \operatorname{Replace} : \Omega_{\operatorname{Critical}} \rightarrow \Omega_{\operatorname{QM-FRG}}$

Solve flow equation w/ LPA and Taylor expansion (cf: Stokic, Friman, Redlich '10) $Z(T,V,N) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta e^{-i\theta N} \exp[-\beta \Omega_{k\to 0}(T,\theta)]$ Parameters : m_{π} =135 MeV, m_{σ} =640 MeV, f_{π} =93 MeV Explicit breaking term in Lagrangian $-f_{\pi}m_{\pi}^2\sigma$ \mathbf{m}_{σ} 0.25 0.7 Crossover at μ =0 w/ T_{pc}=214 MeV 0.6 0.2 CP [Z(2)] at $(T,\mu) = (51,331)$ [MeV] 0.5T [GeV] 0.15 0.4 0.30.1 0.20.05 0.1 0 0 0.15 0.2 0.25 0.3 0.35 0.05 0.1 0 μ[GeV]

基研研究会 熱場の量子論とその応用

11/14

Fluctuations in QM model

Crossover

P(N) from QM+FRG

Crossover

Not important at μ =0 $\begin{array}{l} V{=}10 fm_3^3, \, \mu{=}0 \,\, \text{MeV} \\ V{=}50 fm_3^3, \, \mu{=}0 \,\, \text{MeV} \\ V{=}90 fm^3, \, \mu{=}0 \,\, \text{MeV} \end{array}$ T=210 MeV (Tpc=214 MeV) 1 Chiral crossover Becomes dominant at Large N owing to 0.01 μ=0 the enhancement 0.0001 Source of varying cumulants N) 1e-06 $\begin{array}{l} V{=}10 fm_3^3, \ \mu{=}100 \ \text{MeV} \\ V{=}50 fm_3^3, \ \mu{=}100 \ \text{MeV} \\ V{=}90 fm^3, \ \mu{=}100 \ \text{MeV} \end{array}$ 1e-08 T=210 MeV (Tpc=214 MeV) Chiral crossover 1e-10 μ=100 MeV 1e-12 50 -100 -50 0 100 Ν ŝ 1e-06 **Enhancement of** 1e-08 Large N 1e-10 1e-12 By $exp(\beta\mu N)$ -100 -50 0 50 100 Ν

Somewhat different behavior at Large N

P(N) from QM+FRG

22 Aug 2012

Summary and Outlook

Probability Distribution P(N)

- Calculating canonical partition function Z(T,V,N)
- Relation to analytic structure of Ω at complex μ
 - Integration formula : take appropriate Riemann sheet
- Behavior of cumulants : Shape of P(N)
- Higher order fluctuations Sensitive to large N behavior
- Critical case : two saddle points in "hidden" Riemann sheet lead to an Oscillatory factor; shrinking P(N)
- Need mathematical technique for well-controlled computation
 - Brute forte : Low T is very tough...
 - Analytic method : asymptotic expansion method w/ cuts
- FRG calculation is underwayFirst order transition?

Backup

基研研究会 熱場の量子論とその応用

16/14

Quark-meson model for P(N) w/ FRG approach

$\blacksquare \Omega_{\text{QM-FRG}} \text{ obtained from flow equation}$

Solve flow equation w/ LPA and Taylor expansion

17/14

$$Z(T,V,N) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta e^{-i\theta N} \exp\left[-\beta \Omega_{k\to0}(T,\theta)\right]$$

$$\frac{1}{V} \partial_k \Omega_k = \frac{k^4}{12\pi^2} \left[\frac{3}{E_{\pi,k}} (1 + 2n_B(E_{\pi,k};T,\theta)) + \frac{1}{E_{\sigma,k}} (1 + 2n_B(E_{k,\sigma};T,\theta)) - \frac{2v_q}{E_{q,k}} (1 - n_f(E_{q,k}^+;T,\theta) - n_f(E_{q,k}^-;T,\theta))\right]$$

$$E_{\pi,k} = \sqrt{k^2 + \Omega'_k}, \quad E_{\sigma,k} = \sqrt{k^2 + \Omega'_k + 2\rho \Omega''_k}, \quad E_{q,k} = \sqrt{k^2 + 2g^2\rho}$$

$$\rho = \frac{\sigma^2}{2}, \quad \Omega'_k \equiv \frac{\partial \Omega_k}{\partial \rho}$$

Saddle point

Determined by
$$N = -\left(\frac{\partial \Omega}{\partial \mu}\right)_{T,V}$$

Physical <N> : determined by the order parameter

$$\sigma = 0$$
 ($\mu \ge \mu_c = 20.8 \text{MeV}$)

Saddle Point : on the same Riemann sheet as Integrand!

$$\sigma^2 \ge 0, \quad N \le \langle N \rangle (\mu \le \mu_c)$$

 $\sigma^2 = -a < 0 \quad N > \langle N \rangle (\mu \le \mu_c)$

$$a(T,\mu) = -[2+t-2\cosh(\mu/T)]$$

 $\Omega_{\text{sing}} \sim -\frac{1}{4}a^2(T,\mu)$