高エネルギー原子核衝突実験の最新結果 -国際会議QM2012から

KMI/Department of Physics, Nagoya University 野中 千穂

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

August 22, 2012@熱場の量子論とその応用

Quark Matter 2012

The XXIII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions August 13-18, 2012, Washington D.C.

Quark Matter 2012

The XXIII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions August 13-18, 2012, Washington D.C. http://gm2012.bnl.gov/default.asp

現在の目的

クォークマターの詳細な解析

状態方程式、輸送係数

実験: LargeHadron Collider (LHC) Relativistic Heavy Ion Collider (RHIC)

クォークやグルーオンは直接観測不可
クォークマターをどのように観測するのか?

様々なデータから包括的な理解をめざす 実験データが豊富

Pre-Equilibrium & Initial State	Global & Collective Flow			
	Correlations & Fluctuations			
	QCD at Finite Temperature and Density			
	QCD Phase Diagram			
	Hadron Thermodynamics and Chemistry			
Electro-Weak Probes Jets Heavy flavor &Quarkonia				

New Theoretical /Experimental Developments

Talk について概観

RHIC@ブルックヘブン国立研究所

LHC@CERN

PHENIX, STAR から Au+Au: エネルギースキャン 7.7, 19.6, 27, 39, 62, 200 GeV U+U 193 GeV Cu+Au 200 GeV

ALICE, CMS, ATLAS から Pb+Pb 2.76 TeV

RHIC and LHC

QCD Phase Diagram

RHIC: Au+Au 200 GeV 強結合QGPの発見

RHIC: エネルギースキャン 有限密度方向 QCD相図の詳細な理解

LHC:QGP相の奥へ 強結合QGP?

RHIC and LHC

• 生成粒子数の違い

大きな増大

ALICE:arXiv:1011.1916

RHIC@ブルックヘブン国立研究所

LHC@CERN

PHENIX, STAR から Au+Au: エネルギースキャン 7.7, 19.6, 27, 39, 62, 200 GeV U+U 193 GeV Cu+Au 200 GeV

ALICE, CMS, ATLAS から Pb+Pb 2.76 TeV

PHENIX@RHIC

- d+Au@200 GeV
 - Direct photons (R_{dA}vs P_T)
 - Jet probes: central dependence of R_{dA}
 - $-\psi \Box: R_{dA}vsN_{coll}$: strong suppression
- Collision geometry: U+U, Cu+Au
 - U+U: $v_2vs P_T$: strong radial flow @central
 - Cu+Au: v₁, v₂ vs P_T ; R_{AA} of J/ ψ vsN_{coll}stronger suppression
- Hard probes
 - γ-h correlation
 - Fractional momentum loss $\delta P/P$ in π_0 spectra, energy dependence

 \mathbb{R}_{c} Single electrons, $R_{AA}(c \rightarrow e, b \rightarrow e, heavy flavor \rightarrow e)$

STAR@RHIC

Initial Conditions

d+Au collisions: search for CGC

• sQGP property

- Centrality dependence of v_2 for identical particles, Au+Au 200 GeV
- Charge asymmetry, charge separation at U+U collisions
 - : chiral magnetic effect
- Dielectrons at Au+Au 200 GeV, energy dependence
- Reconstructed jet v_2
- open charm hadrons
- Non-photonic electrons
- Beam Energy Scan 7.7, 19.6, 27, 39, 62 Au+Au
 - Number of constituent quark scaling, R_{cp} suppression
 - Directed flow of proton, HBT, higher moments

ALICE@LHC

- Particle identification, low-mass tracker, low P_T (~100MeV)
- Bulk property
 - P_T spectra, R_{AA} of π , K, p, p/ π ratio vs P_T centrality dependence
 - $-v_2$ for identified particles: check hydro, recombination model
 - v₂, v₃vs η , v₂, v₃, v₄vs P_T
 - baryon HBT
- Hard probes
 - Jet structure, R_{AA} and $R_{CP} vs \ P_T$
- Heavy Flavor
 - $R_{AA},\,v_2$ of D meson, $R_{AA},\,v_2$ of e(µ), D_s
 - R_{AA} of J/ $\psi,$ centrality dependence, v_2 of J/ ψ

$$R_{AB} = \boxed{\frac{1}{N_{\text{coll}}}} \frac{dN_{A+B}/dP_T}{dN_{p+p}/dP_T}$$
normalization

$$R_{CP} = \frac{N_{\rm coll}^{\rm periph} dN_{A+B}^{\rm central}/dP_T}{N_{\rm coll}^{\rm central} dN_{A+B}^{\rm periph}/dP_T}$$

ATLAS@LHC

Collective flow

- v_2 - v_6 vs P_{T_2} , v_2 - v_6 centrality, centrality dependence of v_1 vs P_T
- v_2 fluctuations vs P_T , centrality dependence of v_n distributions
- Electro weak probes
 - Measurement of $\mathbf{Z} \rightarrow \mathbf{e}^+ \mathbf{e}^-, \mu^+ \mu^-$, P_T spectra
 - Prompt photon, P_T spectra
- Medium sensitive probes
 - Open heavy flavor, muon R_{CP}
 - Jet size and centrality dependence of R_{CP}
 - Jet fragmentation
 - Centrality dependence of $R_{\Delta\varphi}vs~P_T$
 - Jet v₂
 - γjet correlations

 $R_{CP} = \frac{N_{\rm coll}^{\rm periph} dN_{A+B}^{\rm central} / dP_T}{N_{\rm coll}^{\rm central} dN_{A+B}^{\rm periph} / dP_T}$

- Ultra-central collisions (0-2 % central)
 - Hierarchy of $v_n \leftarrow$ hydro
- Anisotropy at high P_T
 - $V_{2} v_3 v_3 v_7 up to 50 GeV$
- Jet quenching
 - R_{AA} of photons, Z⁰, no suppression
 - R_{AA} of charged particles, suppression
 - R_{AA} of inclusive jets, suppression
- Parton Identification
- Anatomy of jets
 - Ratio of PbPb/pp differential jet shapes
- Dimuons
 - Sequential Upsilon suppression
 - $R_{AA}vsN_{part}$ and $R_{AA}vs$ biding energy

 $R_{AB} = \underbrace{\frac{1}{N_{\text{coll}}} \frac{dN_{A+B}/dP_T}{dN_{p+p}/dP_T}}_{\text{normalization}}$

Pre-Equilibrium & Initial State	Global & Collective Flow			
	Correlations & Fluctuations			
	QCD at Finite Temperature and Density			
	QCD Phase Diagram			
	Hadron Thermodynamics and Chemistry			
Electro-Weak Probes Jets Heavy flavor &Quarkonia				

New Theoretical /Experimental Developments

Pre-Equilibrium & Initial State

Static color charge, classical gluon field

Pre-Equilibrium & Initial State

to thermalization

photons, entropy

Achieved Temperature ALICE 10³ <u>dŕN</u> (GeV⁻c²) dp_dy 0-40% Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 10² PHENIX 10⁴ AuAu Min. Bias x10⁴ Direct photons or Ed³ σ /dp³ (mb GeV⁻² c^3) 10^{3} AuAu 0-20% x10² Direct photon NLO for $\mu = 0.5, 1.0, 2.0 \text{ p}_{\tau}$ (scaled pp) Exponential fit: $A \times exp(-p_{T}/T)$, T = 304 ± 51 MeV 10² AuAu 20-40% x10 ä 10 urbide et al. PRC69 10⁻³ 10-4 10-5 Ed³N/dp³(GeV⁻²c³) 10-6 10 10-7 14 p_T (GeV/c) 10 12 10 Exponential fit for p_{τ} < 2.2 GeV/*c* inv. slope $T = 304\pm51$ MeV 10^{-t} for 0–40% Pb–Pb at vs 2.76 TeV 10⁻⁷ PHENIX: *T* = 221±19±19 MeV 2 3 5 p_ (GeV/c) for 0–20% Au–Au at √s 200 GeV

Safarik@QM2012

流体模型の初期温度というよりも 全時間発展の平均温度

Hydrodynamic Expansion

Electro-Weak Probes Jets Heavy flavor & Quarkonia

New Theoretical /Experimental Developments

Hydrodynamic Expansion

Global & Collective Flow

Correlations & Fluctuations

QCD at Finite Temperature and Density

QCD Phase Diagram

flow, jet quenching thermal photons

Hydrodynamic Expansion

Global & Collective Flow

Correlations & Fluctuations

QCD at Finite Temperature and Density

QCD Phase Diagram

recombination, fragmentation

Hydrodynamic Expansioncollisionsthermalizationhydrohadronizationfreezeout

Global & Collective Flow

Correlations & Fluctuations

QCD at Finite Temperature and Density

QCD Phase Diagram

final state interactions

Development of Hydrodynamic Model

Fluctuated initial conditions + 3D relativistic viscous hydrodynamics + after burner

Hadron based event generator

Hydrodynamic Model

Author/Presenter	QM2012	arXiv	initial fluctuations	3+1d	viscous	afterburner
Huichao Song	ID	1207.2396			√	√
Teaney/Yan	IA	1206.1905			1	
Chun Shen	IA	1202.6620			1	
Sangyong Jeon	2A		✓	√	1	✓
Matt Luzum	2A				 ✓ 	
Piotr Bozek	2C	1204.3580	✓	√	1	
Björn Schenke	3A	1109.6289	 ✓ 	√	 ✓ 	
Dusling/Schaefer	3A	1109.5181			 ✓ 	
Chiho Nonaka	3A	1204.4795	✓	\checkmark	 ✓ 	
Ryblewski/Florkowski	3D	1204.2624		√		
Longgang Pang	4D	1205.5019	√	\checkmark		
Hannah Petersen	VA	1201.1881	√	\checkmark		✓
Fernando Gardim	6D	1111.6538	✓	√		
Zhi Qiu	29	1208.1200	✓		 ✓ 	
Gardim/Grassi	52	1203.2882	 ✓ 	\checkmark		
Katya Retinskaya	57	1203.0931			 ✓ 	
Hirano/Murase	255	1204.5814	✓	√		✓
Holopainen/Huovinen	284	1207.7331	 ✓ 			
Asis Chaudhuri		1112.1166	 ✓ 		 ✓ 	
lurii Karpenko		1204.5351		\checkmark		✓
Yu-Liang Yan		1110.6704		\checkmark		✓
Josh Vredevoogd		1202.1509		\checkmark	 ✓ 	
Ron Soltz		1208.0897			 ✓ 	✓
Rafael Derradi de Souza		1110.5698	✓	\checkmark		

Higher Harmonics

• Transport property

Ex. WMAP for big bang

n = 6

 $\frac{dN}{dyd\phi} \propto 1 + 2v_1 \cos(\phi - \Theta_1) + 2v_2 \cos 2(\phi - \Theta_2) + 2v_3 \cos 3(\phi - \Theta_3) + 2v_4 \cos 4(\phi - \Theta_4) + \cdots$

n = 2

n = 3

n = 4

Initial geometry

Final flow distributions

n = 5

Centrality Dependence of $v_n(P_T)$

Most central collision: v_3 is dominant. Mid central-peripheral colisions: v_2 is dominant.

ultra-central collisions 0-2 %

Initial conditions,

transport coefficients

v_n at large η

Flow

∳:メソン、質量ほぼp ストレンジネス

強結合QGP生成の証拠 RHICトップエネルギーでは観測 低いエネルギーでは?LHCでは?

 V_2 @ low P_T

Quark Number Scaling@LHC

RHICよりも悪くなっている?

Quark Number Scaling @RHIC

• Energy Scan

Deviation from quark number scaling appears below 11.5 GeV v_2 of φ ?

Baryon/Meson ratios

 Intermediate P_T Baryon enhancement: recombination
 High P_T Fragmentation

Comparison with Theory

Recombination: R.J.Fries, B.Muller, C.Nonaka and S.A.Bass, Phys. Rev. C 68, 044902 (2003)

V₂ @ High P_T

Jets, Heav	vy Flav	or, El	ectro-W	leak
collisions the	ermalization	hydro	hadronization	freezeout
	AN CONTRACTION	5 mm		
Pre-Equilibrium & Initial State	Globa	I &Collective	e Flow	
	Correla	tions & Fluct	uations	
	QCD at Fini QCI	te Temperatu D Phase Diag	ure and Density ram	
		Had	lron Thermodynan	nics and Chemistry
Electro-Weak Probes Jets Heavy flavor &Quarkonia				

New Theoretical /Experimental Developments

Electro-Weak Probes Jets Heavy flavor &Quarkonia

Jets in medium

- Properties of QGP
- Jet quenching mechanism
 - 4 approaches based on pQCD

Model	Assumption about the medium and kinematics	Scales	Resummation
GLV	static scattering centers (Yukawa), opacity expansion	$E \gg k_T \sim \mu, x \ll 1$	Poisson
ASW	static scattering centers, multiple soft scat- tering (harmonic oscillator approximation)	$E \gg k_T \sim \mu, x \ll 1$	Poisson
нт	observable matrix elements at scale Λ (thermalized or non-thermalized medium)	$E\gg k_T\gg \Lambda\sim\mu$	DGLAP
AMY	perturbative, thermal, $g \ll 1$ (asymptotically large T)	$E > T \gg gT \sim \mu$	Fokker-Planck

R_{AA} @ RHIC and LHC

 R_{AA} @ LHC is almost the same as R_{AA} @RHIC.

Fractional momentum loss

C. NONAKA

Sakaguchi

Fractional Momentum Loss

Fractional momentum loss @ LHC is larger than that @ RHIC.

Collision Energy Dependence

- Momentum balance in the dijet
 - Near side: high momentum
 - Away side: low momentum

Jet Fragmentation

Spousta@QM2012

γ-h correlation in Au+Au

• Direct measure of the energy loss

Small centrality dependence

Heavy Flavor

- Production
 - Gluon fusion
 - Initial gluon density and distribution
- Interactions with medium
 - Thermalization: medium transport properties
 - Energy loss: gluon bremsstrahlung radiation, collisional energy loss, collision dissociation...
- Cold Nuclear Effect
 - Gluon shadowing, color glass condensate
- Regeneration

Heavy Flavor

• J/Ψ

- J/Ψ 抑制:QGP生成のシグナル Matsui, Satz, Miyamura ... '86

Regeneration of J/ Ψ

R_{AA} of J/ ψ @ LHC and RHIC

J/ψ Elliptic Flow @ RHIC

J/ψ Elliptic Flow @ LHC

Dileptons

PHENIX

Low mass: enhancement $\rightarrow \rho$ meson in medium?

New Theoretical /Experimental Developments

•QGP状態の解明をめざし大規模で精密な実験が行われている。
•多角的な研究からQGPについての統一的な知見が得られつつある。
•定量的な解明には理論からの理解が不可欠。

