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Introduction

e Quark confinement follows from the area law of the Wilson
loop average [Wilson,1974]
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Introduction (cont’)

* Dual superconductivity is a promising mechanism for the quark

confinement. [Y.Nambu (1974). G.’t Hooft, (1975). S. Mandelstam, (1976) A.M.
Polyakov, (1975). Nucl. Phys. B 120, 429(1977).]

 Electro-magnetic duality >

 Numerical simulations that support dual superconductor
picture

* Abelian dominance [Suzuki & Yotsuyanagi, 1990]

 Monopole dominance[Stack, Neiman and Wensley,1994][Shiba & Suzuki, 1994]
* Center vortex dominance [e.g. Greensite (2007)]
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‘Problems that these are only obtained by gauge fixings by the maximal Abelian
(MA) gauge and the Laplacian Abelian gauge ,and the gauge fixing also breaks
color symmetry(globale symmetery).
*We have given Cho-Faddev-Nniemi-Chabanov (CFNS) decomposition on a lattice,
which can extract relevant modes for quark confinement in gauge independent
way.

quark-antiquark potential from

Wilson loop operator
gauge-independent

“Abelian” Dominance

The decomposed V field reproduced

the potential of original YM field.
Ofull ~ 0OV (93 + 16%)

gauge-independent

monopole dominance

The string tension is reproduced by

only magnetic monopole part.
Ov ™~ Omonopole (94 + 9%)

O full ™~ Omonopole (88 =+ 13%)
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Introduction (cont’)

=>» The magnetic monopole plays a central role in quark confinement.
* |tisimportant to Investigate the magnetic monopoles as a quark confiner.
We study

— the implication between the magnetic monopoles and the phase
transition of confinement /deconfinement .

— Implication between the magnetic monopoles and the topological
configuration of Yang-Mills fields such as instantons.

 There are many pioneering studies of magnetic monopoles for SU(2) YM
theory, which is done in the maximal Abelian gauge (MAG). = Our CFNS
decomposition enables ones the gauge independent study.

* For SU(3) case there are only naive extention of magnetic monopoles
based on the Abelian projection.

=2 We extend of CFNS decomposition to SU(N) (N=3)YM theory, and derive
the gauge independent non-Abelian magnetic monopoles based on the
non-Abalian Stokes theorem.
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Plan of talk

In this talk, we study the dual superconductivity picture of SU(3) Yang-Mills
theory based on the extended Cho-Faddeev-Niemi-Shavanov (CFNS)
decomposition for SU(N) Yang-mills theory and non-Abalian Stokes

theorem. We demonstrate by lattice simulation the Gauge-independent

U(2)-dominance and non-Abelian magnetic monopole dominance in
SU(3) Yang-Mills theory.
Then, study non-Abelian magnetic monopole as quark confiner.

* CFNS decomposition (minimal-option) for SU(3) Yan-Mills theory.

 Gauge independent magnetic monopole from decomposed variables.
For SU(3) case: non-Abelian magnetic monopoles are derived by using
the non-Abalian Stokes theorem

e Lattice data
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We give the Cho-Faddeev-Niemi-Shabanov (CFNS) decomposition for
SU(N) Yang-Mills theory as the extension of SU(2) version, which can
extract the relevant elements of gauge fields for confinement.

CFNS DECOMPOSITION FOR SU(3)
YANG-MILLS
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Decomposition of SU(3) Yang-Mills link variables
KEK-PREPRINT-2008-36, CHIBA-EP-173, arXiv:0810.0956 [hep-lat]
*Phys.Lett.B669:107-118,2008.

KEK-PREPRINT-2009-32, CHIBA-EP-181, arXiv:0911.5294 [hep-lat]

 The decomposition as the extension of the SU(2) case.

* |sthere any possibility other than projecting to the maximal
torus group? =2 Two options are possible corresponding to

stability [group
minimal case U(2) = SU(2) x U(1) € SU(3)

maximal case U(1) x U(1) € SU(3)

v" Maximal case is gauge invariant version of Abailan projection in
the maximal Abelian (MA) gauge. (the maximal tours group)
POS(LATTICE-2007)331, arXiv:0710.3221 [hep-lat]
v" Minimal case is derived for the Wilson loop, which gives the
static potential of the quark and anti-quark for the fundamental
representation. Kei-Ichi Kondo, Phys.Rev.D77:085029,2008.
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The decomposition of link variables

Wc[U] = Tr[P |1 Ux,u:|/Tr(l) Uy hx
(X, X+1)eC M-YM
Usxy = XxuVxu SU@)» x [SUB)U2)],

Xreduction ]
UX,,U — U;(,‘u — QXUX,qu(+u

VX,,u — V;(“u — QXVX,‘quH,u Yang-Mills

/ n theory
e = Xi [0

U Uz SU@)so V0 R
\/QX e G = SU(N)

We[V] = Tr| P[] Viu |/Tr(D)

NLCV-YM

Wc[U] = const.Wc[V] !l
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Defining equation for the decomposition

Introducing a color ﬁeloi hy = E(A8/2)&ET € SU(3)/U(2)i with & € SU(3), a set of the

definining equastion of decomposition Uy, = Xx.Vx 1s given by

D'z[V]hx - %(VX,‘uhXﬂl — hXVXJJ) - O,

. (0 A kAN (RN (
gx = e MNexp(—iai’hx i)~ aduy) = 1
which correspod to the continume version of the decomposition A ,(X) = V(X) + X,(X):

D.VIh(X) = 0,  tr(h()X.(x)) = O.

The solution is given by Phys.Lett.B691:91-98,2010.

2 _ —
Loy = NE=2N429 4 (y -2 ‘/Z(NTD (N + Uy e Usl)

+ 4(N = 1)hyUy uhyr Uz,

Lxu = \/Lx,ul—;,u ﬁx,u = ﬁx,u = (VLx,uL;,u)_le,u-
Xy = t;r(,u(det(l:x,u))lmgil
Viu = X;,uux,u - gxLx,uux,u(det(tx,u))_lm
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The defining equation and
the Wilson loop for the fundamental representation

By inserting the complete set of the coherent state |Ex, A) at every site on the Wislon loop

C,1= I|§X,A)du(§x)(A, Ex| we obtain

We[U] = tr(j U> = 1 [ duEA Ul A)

x>eC <X X+u>eC

_ 1_ Idu(fx)(A,|(§§Xx,y§x)(éivx,uéxw)l’A>

<X, X+u>eC

where we have used &x&% = 1.

For the stability group of H, thel 1st defining equation
§VX,.U§T € FI — [g)T(VX,,u§X+‘u1|:|] — hXVX,/,t _VX,‘uhx+u = O

implies that |A) is eigenstate of fivx,ﬂfxw ,
(&Vx,ufx+u)|/\> = |A>ei¢v el = <A|§>T<VX,N§X+M|A> = <Av§X|VX,u|§x+u’A>-

Then we have

WelU] = [du@plXiel [ (A &xVaulnwA)

<X, X+u>eC

pGE] = | ] (A ExlXuuln A
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The defining equation and
the Wilson loop for the fundamental representation (2)

By using the expansion of Xy ,: thel 2nd defining equaitonl, tr(X,(x)h(x)) = 0, derives
(A, Ex Xl xrps A) = tr(Xw)/tr(1) + 2tr(Xx uhx)
= 1 + 2igetr(X,(x)h(x)) + O(e?).

Then we have p[X;&] = 1 + O(e€?).
Therefore, we obtain

WC[U] = Idﬂ(gx) 1_[ <A1§X|VX,H|§X+/J’A> = WC[V]

<X, X+u>eC

By using the non—Abalian Stokes theorem, Wilson loop along the path C is written to area
integral on X :C = 0% ;

We[A] = tr[Pexp(—igtfdxﬂAu(x)) :|/1:r(1) - j dues (&) exp( j o dsuVF,W[V]),
C T

(no path ordering), and the decomposed Vy, corresponds to the Lie algebra value of Vy
and the field strength on a lattice is given by plaquet of Vy,
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THE GAUGE INVARIANT (INDEPENDENT)
NON-ABELIAM MAGNETIC MONOPOLES
FROM THE DECOMPOSED VARIABLES



Non-Abelian magnhetic monopole

From the non-Abelian Stokes theorem and the Hodge decomposition, the
magnetic monopole is derived without using the Abelian projection

WelA] = [dus@exp([ dsmFalv])

- [dus(® exp[ig INZL (kE5) +ig Nl (j,Nz)}

k :=6*F = *dF, By = 0*@zAl
j .= 5F, Nz = 5@2A_1
A = dé+éd

QL = j 0285 (x(0))5°(x ~ X(0))

k and j are gauge invariant and conserved current 6k = 0 = 9j.

K.-1. Kondo PRD77 085929(2008)

Note that the Wilson loop operator knows the non-Abaelian magnetic
monopole k .
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Non-Abelian Magnetic monopole (2)

The lattice version of the magnetic monopoles is given by as follows

The magnetic monopole currents are calculated from decomposed variable Vy , as
VX,/,LVX+‘u,ij(+v,,uV;L(,v = eXp(—igF[Vﬂ(X)]uv) = exp(—ig@ﬁvhxf),

®8, = —argTr[ (%1 —%hx)vx,uvw,vviw,uv;,v}

kx"u = %Guvaﬁave)gﬂ.

Integer valued monopole charge is defined by ny, = Ky, ./(27).

Note that:

Since the current k is defined by the field strength F[V], it is the non-Abalian
magnetic monopole defined in the gauge invariant (independent) way,
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Lattice data

Numerical simulation

Quark and anti-quark potential for the fundamental
representation

* Wilson loop by decomposed variables V

* Non-Abalian monopoles Monopole and static potential
Correlation functions of decomposed variables

* Correlation function of color fields
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Numerical simulation

* The configurations of YM field are generated by using the standard Wilson
action and pseudo heat-bath method.

* The color fields are determined by using the reduction condition such that
the theory in terms of new variables (V,X,h) is equaipolet to the original

Yang-Mills theouy3),, x [SU3)/U(2)], » SU(3) w0

Determining hy to minimize the reduction function for given Uy,

Freal; Ux] = 3 1] (D5[Uxulhi) (D5[Uxulhy)' |

X,

 The decomposition U=XV is obtained for arbitrary YM field U (and the color
field h) by using the formula (U h = L = V. X)
M-YM Ux,u,nx

SU@B)w x [SUB)/U2)],

reduction

Yang-Mills NLCV-YM
‘ theory

SU(3) U:E’” SU(3)9=(D VX,u; Xx,y

.
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global SU(3) (color) symmetry

VEV of color field
(hA(X)) = 0+ 0.002

Two point correlation
function of color vector
fields. (right figures)

(hhy) = 6°°D(x - )

Color symmetry is preserved.

0.14 T T T T

M hAGOhA(Y))

(0] 2 4 6 8 10 12 14 1
distancs (I)

-
"7 (hA(OhB(y)), A+ B
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Static potential

Wilson loop by the decomposed variable V

Dose Wilson of V loop reproduces the original one?
Wc[U] = const.W¢[V] I

To get the static potential
V(R) = —limr_., 7 logWrn[V])

We fit the Wilson loop W, V] by the function V(R,T)
Wern[V]) = exp(-V(R,T))

VR, T) =TxV{R)+@R+b" +c'/R)+ (@R +Db"+C"R)IT
V(R) = oR + b +c/R



V(R)a
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244 |attice beta=6.0

I I I
WCIR:T] = exp(-V(R;T))
V(R:T)=T*"V(R) + (aa"R + bb + cc/R) + (a0*R + b0 +c0/R)/T
fitfor R=1,2,..10,11 ;T=8,9, ..,12 G
V(R) = a*R+b+c/R
a =0.0412 pm 0.0071 (17.2%) X
b = 0.1946 pm 0.03838 (19.7%)
c = -0.04797 pm 0.03814 (79.5%)
sigma,,/sigmay,, = 0.860573 *
sigmay, = (0.2189)° R =
sigma,, =0.0412363 —
V(R T=8)/T
V(R;T=10)/T +—¢—
V(R T=11)/T
V(R) —
] | l | l I |
2 4 6 8 10 12

R/a



String tension from

non-Abelian monopoles
1 8

' ' ' ' 'laftice data - _
- fitting kx,,u — __em/pdal/e:c,pa
<exp<| ZX ‘Ll KX"udX“u>> 47(
08| : 1 2
o8, = —argTr[(Z1 - ﬁhx)vw,ﬂvﬁﬁ,yvgjw,uvgy
06+ 100 [ |
| Kq
04| g 10r
0 1r
°2r omlosy =~ 0.76 %
- 01¢F
ol : L L L ' L
1 2 3 4 3 3] 7
0.01 r
Vm(R) = —am/R + GmR + ﬂm
0.001 L
3 2 1 0 1 2 3
Toaym ro /i Volume  Reference mopole charde
57 038T0(30)  20000(24) 16732 EHK o
| IO L ; *The distribution of the monopole
G0 0.2180(9]  5.369(9) 16° - 32 EHK ) for 164 latt 7
0.2184(19) 5.34(+2)(-3) 161 SESAM charges Tor 167 attice /5=>5.
(1.2200(23) 324 Bali /Schilling/Hoeber 490 (_30nf_|gurat|0n3- The _ _
0.2154(50)  5.47(11) 167 .48  UKQCD distribution of each configuration

Is shown by thin bar chart.

From, B«6-Edward et.al , Nucl.Phys. N6l &3/4-392 ~ /1
(1988)



Combination plot for SU(3) minimal

U:T=6 +

16 v:T=6
Mono: +—*

fitU

1.4 fit V

sifBo02 0.128396

sigma_v = 0.0743776

sigma_m = 0.070705

sigma_ref = 0.0825988

1  sigma_u/sigma_ref = 1.5545
sigma_v/sigma_ref = 0.90047
sigma_m/sigma_ref = 0.85601

V(R)a

0.8 | 1
0.6 |
0.4 | ya X
.
0.2 |
-3
e
O 1 1 | | 1 1 |
0 1 2 3 4 5 6 7
R/a
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ANALYSIS OF MONOPOLES



Property of monopoles on lattice

R N P N « Non-zero Monopole currents
R S S can be identified with
Fowr = argTrl(1 4+ 0)VayVop oV 45 Vi) geometrical objects.
: — Nonzero current < edge
- Invariant under SU(2) gauge — end points (dual lattice site)
. & vertices
transformation. ,
. — Sign (strength) of current <
« Monopole currents are define as direction (waite)
link variables on the deal lattice .« Current conservation

(shifted by a half integer for

.Y <> The same number of Incoming
each direction.)

and outgoing links

* They take integer values =» =monopole current construct

n,  ={-2,-1,0,1,2} loops
e Current conservation:

€DpMa p = Possible verteces

Z(nmaﬂ - nﬂ?—#,u) = Z UENTE 0 Ci * % %
T p==+1,..,+4
with beein n, _, =n,—,

2010/8/30 BB DEFimETDILH



Monopole contribution to the Wilson loop

K ,’
(WelV]) = (We[Mono]) <exp{ l;/

v 4
ey = Z efrP o, A~ Yz — ¥ (,A_l(s . S’)

a(y)EE o

» Wilson loop of the monopole part decomposed into the contribution of each
monopole loop, since monopole currents are decomposed into loops.

» The small monopole give zero contribution, since integral by opposite direction of
current canceled each other. =»The large cluster of monopole loops contribute to
the Wilson loop.

Possible monopole clusters o
N\ <7\
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Examples of long monopole loops

Phe #428

Monopole loops are plotted in 3-
dimensional space (243 lattice with
periodic boundary condition) by
projection from 4D space (x,y,z,t) to3DT
space (x,y,t) .
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Summary & outlook

* We have given the decomposition in the gauge independent way for SU(N)
Yang-Mills fields, U, =X, ,V, , as the extension of CFNS decomposition for
the SU(2) YM theory.

* As the result of non-Abelian stokes theorem, we have shown that the
Wilson loop for the fundamental representation is represented by field of
minimal option, not the maximal option (Abailan projection in MAG)

* We have define non-Abelian magnetic monopole in gauge independent way.

* We have performed the numerical simulation in the minimal option of the
SU(3) lattice Yang-Mills theory and shown:

— V-dominance (say, U(2)-dominance) in the string tension (85-95%)
— Non-Abalian magnetic monopole dominance in string tension (75%)
— color symmetry preservation, infrared V-dominance (U(2)-dominance)

The monopole configuration can be analyzed by using computational
algebra.

=» Study the phase transition of confine/deconfine in terms of monopoles. (In
progress.)
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