原子核におけるα粒子のBose-Einstein凝縮

大久保茂男 S. Ohkubo (高知女子大·環境理学科)

2010.9.1

¹⁹⁸³α粒子の多体系でBose-Einstein 凝縮はあるか?

Gambbir, Ring and Schuck:PRL 51, 1235 (1983):

A superfluid condensate of alpha particles ?

In conclusion we can say that our BCS-like theory for bosons in conjunction with the IBM2 Hamiltonian suggests that open-shell nuceli (open in protons and neutrons) may form a superfluid condensate of α particles rather than separate superfluid phases of proton and neutron pairs.

VOLUME 51, NUMBER 14

PHYSICAL REVIEW LETTERS

3 October 1983

Nuclei: A Superfluid Condensate of a Particles? A Study within the Interacting-Boson Model

Y. K. Gambhir^(a) and P. Ring Physih-Department, Technische Universität München, D-8046 Garching, West Germany

and

P. Schuck Institut des Sciences Nucléaires, F-38042 Grenoble, France (Received 11 July 1983)

The authors have studied the question of whether pairs of neutrons and pairs of protons of the usual superfluid phases form a bound state to give rise to a superfluid condensate of " α particles." They indeed find indications for this to be the case from a BCS-like study for bosons using the proton-neutron interacting-boson model as well as from an even-odd effect in the number of pairs using experimental binding energies.

▶ INT. CONF. NUCLEAR STRUCTURE, TOKYO, 1977

 Soc. JAPAN 44 (1978) SUPPL. p. 225-231
 N-B-a The Resonating Group Method for 3-Cluster Systems Based on the Use of Generator Coordinate Kernels
 —Application to the 3α Structure of ¹²C and the 3α Reaction in Stellar Evolution—

Y. FUKUSHIMA and M. KAMIMURA[†]

2004

Hoyle stateのdilute propertyの実験的検証

Rainbow, prerainbow

Bose-Einstein凝縮と 核虹のエアリー構造

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 70, 041602(R) (2004)

Bose-Einstein condensation of α particles and Airy structure in nuclear rainbow scattering

S. Ohkubo¹ and Y. Hirabayashi² ¹Department of Applied Science and Environment, Kochi Women's University, Kochi 780-8515, Japan ²Information Initiative Center, Hokkaido University, Sapporo 060-0810, Japan (Received 4 December 2003; published 25 October 2004)

20

熱場の量子論

2010.9.1

解析: Hoyle 状態の構造とエアリー構造

α + ¹²C 散乱のチャネル結合法による解析

- ¹²Cの波動関数 3α RGM~ボーズ凝縮の波 動関数
- ・密度依存DDM3Y有効相互作用による畳込み

BOSE-EINSTEIN CONDENSATION OF α PARTICLES AND AIRY

Potential parameters, rms, and volume integrals

TABLE I. The normalization factor N_R , volume integral per nucleon pair J_V , rms radius $\langle R^2 \rangle^{1/2}$, of the folding potential, and the strength of the imaginary potential. The radius $R_W=4.7$ fm and diffuseness $a_W=0.7$ fm of the imaginary potentials are used.

	E_L (MeV)	N_R	J^{π}	J_V (MeV fm ³)	$\langle R^2 \rangle^{1/2}$ (fm)	W (MeV)
(基底状態)	139	1.23	0_{1}^{+}	294	3.484	8.0
			2+	291	3.469	10.0
		(ホイル状態)	3-	327	3.742	14.0
			0^{+}_{2}	366	4.304	28.0
(基底状態)	166	1.26	0_{1}^{+}	286	3.499	7.0
)		2+	283	3.485	10.0
			3-	320	3.752	14.0
		(ホイル状態)	0^{+}_{2}	358	4.310	27.0
其底状能)	172.5	1.26	$\overline{0_1^+}$	292	3.506	7.5
至此小(法)			2+	289	3.493	9.0
			3-	327	3.758	12.0
		(ホイル状態)	0^{+}_{2}	367	4.315	25.0
(基底状態)	240	1.42	0_{1}^{+}	264	3.532	7.5
			2+	261	3.519	12.0
			3-	295	3.777	17.0
		(ホイル状態)	0^{+}_{2}	330	4.328	30.0

熱場の量子論

¹²Cには量子渦状態は存在しない

2010.9.1

熱場の量子論

α 粒子はBose・Einstein凝縮しているか? 実体的な物の論理?

¹²CのHoyleの3α系の密度が希薄であることは実験的に確認

・しかし、超流動や渦は確認されず α 粒子Bose・Einstein凝縮している実験的な直接的証拠はない。

確かな実験的証拠??

2010.9.1

熱場の量子論

束縛状態でなく散乱状態として解くべき

閾値近傍の状態でクラスターの発達した状態は

1) 散乱条件を正しく取り入れて、

 2) 散乱状態で適切な有効相互作用を用いて解かれるべき。
 (有効相互作用のstarting energy dependence 有効相互作用と模型空間の相互規定性)

Bose-Einstein α 粒子凝縮にともなう 実体的な固有のモードは見られないのか?

 3α 系では dilute property は実験的にも確認されるが、 Bose-Einstein α 粒子凝縮による実体的な物の論理(超流動、量子渦など)は実験 的には確認できてない。

¹⁶Oの4α構造

有限系の原子核の α 粒子ではどうか?

0⁺のみでなく 励起状態もともに理解されるべき。
 (部分のみでなく全体を見るべき: 部分と全体の弁証法)
 東縛状態近似ではなく共鳴状態として正確に解くべき。

¹⁶Oの4α構造の研究状況: 1967 Chevallier et. al. 4α linear chain model

VOLUME 160, NUMBER 4

Breakup of O¹⁶ into Be⁸+Be⁸[†]

P. CHEVALLIER AND F. SCHEIBLING Institut de Recherches Nucléaires, Strasbourg-Cronenbourg, France

AND

4 04

6

ົ

G. GOLDRING, I. PLESSER, AND M. W. SACHS* The Weismann Institute of Science, Rehavoth, Israel (Received 27 January 1967)

Eo((Her)

20 -

16 -

12-

9.852

1382 C²+ 01

018

15.669 0⁷⁵+ n

12.125 N¹⁵+ p

¹⁶Oの α + ¹²C(Hoyle) クラスター構造

チャネル結合法による*α* + ¹²C散乱の解析

- ¹²Cの波動関数 3α RGM~ボーズ凝縮の波 動関数
 - 密度依存DDM3Y有効相互作用による畳込み

Coupled channel equations $\Psi = \sum_{i} \varphi(\alpha)\varphi_{i}(^{12}C)\chi_{i}(\mathbf{R}), \qquad (1)$ $\begin{bmatrix} -\frac{\hbar^{2}}{2\mu} \bigtriangledown^{2} + U_{ii}(\mathbf{R}) - (E - \epsilon_{i}) \end{bmatrix} \chi_{i}(\mathbf{R}) \qquad (2)$ $= -\sum_{j \neq i} U_{ij}(\mathbf{R})\chi_{j}(\mathbf{R}). \qquad (1)$ Cluster 1Cluster 2

DDM3Y effective interaction

 $v_{NN}(E,\rho;s) = g(E,s)f(E,\rho).$

 $f(E,\rho) = C(E)[1 + \alpha(E)e^{-\beta(E)\rho}],$

取り入れる¹²C のchannel

g.s., 2_1^+ (4.44 MeV), 3^- (9.65 MeV), 0_2^+ (7.65 MeV) and 2_2^+ (10.3 MeV). The absorption due to the coupling to all the other

Imaginary potential

 $E_L = 18 \text{ MeV}$ open channels, i.e., $p + {}^{15}N$, $n + {}^{15}O$ and $d + {}^{14}N$ channels

 $N_I = 0.045$.

 Real potential

 $[E_{\alpha} = 139, 166 \text{ and } 172.5 \text{ MeV}]$
 $E_L = 18 \text{ MeV}$
 $N_R = 1.23 - 1.26$
 $N_R = 1.398$

High energy alpha + scattering E_L =172.5MeV 166MeV

恋場の量子論

Fig. 1. The experimental data [13] of elastic and inelastic α scattering from ¹²C at $E_{\alpha} = 172.5$ MeV are compared with the coupled-channel calculations (solid curves).

Fig. 2. The experimental data [14] of elastic and inelastic α scattering from ¹²C at $E_{\alpha} = 166$ MeV are compared with the coupled-channel calculations (solid curves).

2010.7.1

High energy alpha + scattering E_L =139MeV 106MeV

High energy alpha + scattering $E_L=82MeV$ 65MeV

4010.7.1

ミッの量子論

High energy alpha + scattering $E_L=172MeV - 41MeV$ (elastic)

Normalization factor N_R and volume integral per nucleon pair J_V (in MeV fm³)

E_{α}, MeV	N_R	J_V	J_V [28]	J_V [15]
41	0.90	246		
65	1.16	313		
82	1.16	305		
104	1.16	298	393	319
139	1.16	286	353	278
166	1.16	279	326	
172.5	1.16	286		277

Fig. 7. The experimental angular distributions of elastic α scattering from ¹²C are compared with the coupledchannel calculations (solid curves).

 $E_L=18.5$ MeV (lowest energy) $\alpha + {}^{12}$ C散乱の解析

2010.9.1

熱場の量子論

¹⁶Oの α + ¹²C(Hoyle) クラスター構造 をもつエネルギー準位

 $\alpha + {}^{12}C(Hoyle)$ 160

2010.9.1

熱場の量子論

$K=0_1^+, K=0_1^-$ band widths

18.5 2							Ŧ				
	cal.						exp.				
	J^{π}	E_x	Γ_{α}		$\theta_{\alpha}^{2}(a)$		E_x	Γ_{α}		$\theta^2_\alpha(a)$	
		(MeV)	(keV)		a (fm))	(MeV)	(keV)		$a \ (fm)$	
				5.2	5.6	6.0]		5.2	5.6	6.0
$K = 0_1^+$	4^{+}	10.00	5	0.15	0.09	0.06	10.36	26 ± 3	0.35	0.22	0.14
	6^+	14.37	34	0.10	0.06	0.04	16.28	420 ± 20	0.36	0.26	0.20
$K = 0^1$	1	9.67	778	1.02	0.87	0.79	9.59	480 ± 20	0.71	0.61	0.54
	3	11.61	822	0.64	0.54	0.48	11.60	800 ± 100	0.63	0.53	0.47
	5	15.09	440	0.26	0.21	0.18	14.66	672 ± 11	0.49	0.38	0.31
	7	20.86	1790	0.77	0.59	0.49	20.86	904 ± 55	0.39	0.30	0.25

熱場の量子論

2010.9.1

$K=0_2^+, K=0_2^-$ band widths

	J^{π}	E_x	Γ		J^{π}	E_x	Γ
		(MeV)	(MeV)			(MeV)	(MeV)
$K = 0_{2}^{+}$	0^+	16.61	1.14	$K=0_2^-$	1	16.98	0.57
	2^+	17.04	0.45		3	17.83	0.27
	4^{+}	18.38	0.23		5	18.86	0.24
	6^+	19.95	0.39		7	20.81	1.17

superfluidity

Reduction of moment of inertia

Large moment of inertia I $I = I(\alpha) + I({}^{12}C(0_2^+)) + I(rel)$ 56% 40%

R=5.9 fm
 cf. 4 α linear chain model
 R=12.3 fm

15.1 MeV 0⁺ state (Γ =186 keV)

 $\Gamma_{\alpha}/\Gamma=0.35$

0+ states:

15.1 MeV 0+

17.6MeV (0+,1-)

18.1 MeV(0+, spin tentative)

まとめ

- 1)¹⁾¹⁶O の4α閾値近傍に local condensed
 α +¹²C(Hoyle)クラスター構造をもつ状態が存在する
 (4 α chainにあらず)
- 2) 大きい慣性能率: 大きい半径をもつ
- 3) 15.1MeV O⁺ 状態: 慣性能率が4分の1に減少 α凝縮状態の可能性、超流動の特徴
 4) Local α condensation が広く存在する可能性
 2010.9.1