強く相互作用するフェルミ粒子系の熱力学

向山 敬(Takashi Mukaiyama)

電気通信大学

JST-ERATOマクロ量子制御プロジェクト

BEC in a cold atom system

1995 <u>Realization of atomic gas Bose-Einstein</u> <u>condensation</u>

Atom laser

Super-radiance

ΜП

Bose nova

BEC in a cold atom system

Cold atoms are

- very dilute (10¹¹~10¹⁴ cm⁻³),
- with no impurities, no defects.

Amenable to simple theoretical description

J. R. Ensher, et al., Phys. Rev. Lett. **77**, 4984 (1996).

5% deviation of critical temperature from theoretical predictions

3% shift due to finite number correction2% shift due to interaction

Inter-atomic interaction is tunable !!

Feshbach resonance

There are two channels corresponding to different spin states.

Resonance occurs when open and closed channel are energetically degenerate.

Loss near Feshbach resonance

ultracold fermionic atoms

1999 Fermi degenerate gas

Collision channel

Identical bosons : l=0(s-wave), l=2 (*d*-wave), ... Identical fermions: l=1 (*p*-wave), l=3 (*f*-wave), ...

ultracold : *s*-wave is the dominant collision channel.

Identical fermions do not collide.

Think about two-component fermions

At the Feshbach resonance for one and one, no loss occurs due to Pauli exclusion principle.

Therefore two-component fermions are stable even at a Feshbach resonance.

We are able to prepare an interacting (reasonably stable) two-component Fermi gas of atoms with an arbitrary interaction strength !!

BCS-BEC crossover

Idea : BEC and BCS type superfluid are the opposite extreme of the same phase

momentum distribution measurement

Condensed or not? See the bimodal profile !!

... unfortunately this scheme does not work.

Fermion pair condensate

"projection"

C. A. Regal et al. Phys. Rev. Lett., **92**, 040403 (2004)

If we sweep the magnetic field

- slow enough to convert atom pairs into molecules
- fast enough such that the momentum distribution of the projected molecules reflects that of pairs prior to the sweep

BCS-BEC crossover (experiment)

C. A. Regal *et al.,* PRL 92, 040403 (2004)

 $T/T_{\rm F}$ is measured under ideal gas condition (magnetic field where *a*=0).

Adiabatic does keep entropy constant, but not $T/T_{\rm F}$.

M. W. Zwierlein *et al.,* PRL 92, 120403 (2004)

 $T/T_{\rm F}$ was measured at 1025 G (magnetic field where *a*=-4000*a*₀).

Again, $T/T_{\rm F}$ is not the one measured at unitarity, but somewhere different.

Conventional thermometry

This scheme is good only when interaction energy << kinetic energy.

Thermodynamic of an ideal Fermi gas

 n^{-1}

/3`

Thermodynamic behavior of an ideal Fermi gas is described by its temperature T and density n.

Thermodynamic of an ideal Fermi gas

Fermi-Dirac distribution

$$n(\varepsilon) = \frac{1}{z^{-1}e^{\beta\varepsilon} + 1} \quad \left(z \equiv e^{\beta\mu}, \beta = (k_{\rm B}T)^{-1}\right)$$

$$\frac{\mu}{E_{\rm F}} = f_{\mu} \left(\frac{k_{\rm B}T}{E_{\rm F}}\right)$$

Thermodynamic of an ideal Fermi gas

$$E = \int_{0}^{\infty} \frac{\varepsilon D(\varepsilon)}{z^{-1} e^{\beta \varepsilon} + 1} d\varepsilon$$
$$\frac{E}{NE_{\rm F}} = -\frac{3\sqrt{\pi}}{4} \left(\frac{k_{\rm B}T}{E_{\rm F}}\right)^{5/2} Li_{5/2}(-z)$$

Other thermodynamic functions also have this similarity.

$$\frac{S}{k_{\rm B}} = f_{S} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)$$
$$\frac{F}{NE_{\rm F}} = f_{F} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)$$

Thermodynamic of an ideal Fermi gas

Material specific parameter, such as m, is taken up by $E_F(T_F)$. (Shape of the functions do not depend on the particle's nature.)

Universal thermodynamics

Thermodynamic of an interacting Fermi gas

Ultracold, dilute, interacting Fermi gases

• ultracold : s-wave is the dominant channel.

• <u>dilute</u> : details of the potential is much smaller than $n^{-1/3}$

The collision process can be described by a single parameter, so-called scattering length a_s .

Thermodynamic of an interacting Fermions

Ideal Fermi gas

Fermi gas with interaction

 $\frac{E}{NE_{\rm F}} = f_E\left(k_{\rm B}T, E_{\rm F}, E_{\rm int}\left(a_{\rm s}\right)\right)$ Ê $- = J_{E,ideal}$ $\overline{NE_{\rm F}}$ E_{r}

Ultracold dilute Fermi gas

Remember the fact that *a_s* is tunable!!

Then, what happens when...

 $|a_{\rm s}| \longrightarrow \infty$

This situation is called unitarity limit.

Unitarity limit and Universality

 $a_{\rm s}$ drops out of the description of the thermodynamics.

Thermodynamics depends only on the density *n* and temperature *T*.

Universal thermodynamics holds again...?

Thermodynamic of an interacting Fermions

Ideal Fermi gas

Fermi gas with interaction

$$\frac{E}{E_{\rm F}} = f_{E,ideal} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)$$

 $\frac{E}{NE_{\rm F}} = f_E\left(k_{\rm B}T, E_{\rm F}, U(a)\right)$

When the scattering length diverges...

 $\frac{E}{NE_{\rm F}} = f_E\left(k_{\rm B}T, E_{\rm F}, \mathcal{O}(a)\right) \Rightarrow f_{E,|a|=\infty}\left(k_{\rm B}T, E_{\rm F}\right) = f_{E,|a|=\infty}$ $E_{\rm F}$

There is a hypothesis that the thermodynamic functions again have the universal form.

> Universal hypothesis

Universal thermodynamics

According to universal hypothesis, all thermodynamics should obey the universal functions:

System looks like a non-interacting Fermi gas. (no other dimensional parameters involved in the problem)

Universal thermodynamics

Bertsch's Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of spin ½ fermions interacting via a zero-range, infinite scattering-length contact interaction.

 $E_{gs} = f(N, V, m) = N \cdot E_F \times \xi \longleftarrow$ pure number

Besides pure theoretical curiosity, this problem is relevant to neutron stars!

Universal thermodynamics

H. Hu, P. D. Drummond & X.-J. Liu, *Nature Physics* **3**, 469 - 472 (2007)

T is constant over the cloud (thermal equilibrium). $E_{\rm F}$ depends on the position (local density).

Global measurement only gives the integration of all the different phases.

Goal of this experiment

Measurement of **local** thermodynamic quantities

and

the determination of the universal thermodynamic function.

$$\frac{E}{NE_{\rm F}} = f_E\left(\frac{k_{\rm B}T}{E_{\rm F}}\right) \quad \Longrightarrow \quad \frac{\varepsilon\left(\mathbf{r}\right)}{n\left(\mathbf{r}\right)E_{\rm F}\left[n\left(\mathbf{r}\right)\right]} = f_E\left(\frac{T}{T_{\rm F}\left[n\left(\mathbf{r}\right)\right]}\right)$$

ε : local energy density $E_{\rm F} = k_{\rm B}T_{\rm F}$

Experiment setup

Determination of local energy $\varepsilon(\mathbf{r})$

$$\frac{\varepsilon(\mathbf{r})}{n(\mathbf{r}) E_{\rm F}[n(\mathbf{r})]} = f_{\rm E}[T/T_{\rm F}]$$

density profile

 $n(\mathbf{r})$

 $f_E[T/T_F]$

 $T/T_{\rm F}$

Useful equations :

- Equation of state of unitary gas : $p(\mathbf{r}) = \frac{2}{3}\varepsilon(\mathbf{r})$
- mechanical equilibrium (eq. of force balance) :

 $\nabla p(\mathbf{r}) + n(\mathbf{r}) \nabla V_{\text{Trap}}(\mathbf{r}) = 0$

 $n(\mathbf{r}) \implies p(\mathbf{r}) \implies \varepsilon(\mathbf{r})$

Determination of temperature T

$$\frac{\varepsilon(\mathbf{r})}{n(\mathbf{r}) E_{\rm F}[n(\mathbf{r})]} = f_E[T/T_{\rm F}]$$

$$p(\mathbf{r}) = \frac{2}{3} \varepsilon(\mathbf{r}) \text{ and } \nabla p(\mathbf{r}) + n(\mathbf{r}) \nabla V_{\text{Trap}}(\mathbf{r}) = 0 \implies E_{\text{total}} = 2 \times E_{\text{potential}}$$

Adiabatic B-field sweep to turn off
the interaction entropy S
$$E_{\text{total}} \text{ vs } S \implies E_{\text{total}} \text{ vs } T$$
$$\frac{1}{T} = \frac{\partial S}{\partial E}$$

Le Luo and J.E. Thomas, J Low Temp Phys **154,** 1 (2009).

1. Energy comparison

$$E_{\text{total}} = 2 \times E_{\text{potential}} \implies E_{\text{pot}} = E_{\text{internal}}$$

$$\checkmark \text{ Potential energy par particle}: \quad E_{\text{pot}} = \frac{3}{2}m\omega_z^2 < z^2 >$$
Comparison
$$\checkmark \text{ Internal energy par particle}: \quad E_{\text{internal}} = \int n\varepsilon_{\text{F}}(n) f_{\text{F}}[\theta] dV / N$$

J

2. Effective speed of the first sound

2. Effective speed of the first sound

2. Effective speed of the first sound

Unitary gas shows hydrodynamic behavior due to the large collision rate

2. Effective speed of the first sound

Experimental values vs. calculated values from $f_E[\theta]$

The universal function of the internal energy $f_E[T/T_{ m F}]$

Universal hypothesis : $\frac{\varepsilon}{nE_{\rm F}} = f_{\rm E}[T/T_{\rm F}]$

Equation of state : $p = \frac{2}{3}\varepsilon$

Mechanical equilibrium : $\nabla p(\mathbf{r}) + n(\mathbf{r})\nabla V_{\text{Trap}}(\mathbf{r}) = 0$

Energy comparison

Bimodal distribution of a fermion pair condensate

Condensate fraction vs Temperature

Universal thermodynamic functions

Internal energy

$$f_E = f_F - \theta f'_F$$

$$f_\mu = (5f_E - 2\theta f'_F)/3$$

$$f_S = -f'_F$$

Helmholtz free energy

Chemical potential

Entropy

In the case of unitary gas, equation of state $p(\mathbf{r}) = 2\varepsilon(\mathbf{r})/3$ is available (exceptional case !!) which enable us to measure local thermodynamic quantities.

Then, how can we determine local thermodynamic quantities without help of equation of state ?

Box potential

High resolution local probe

W. S. Bakr et al.Nature 462, 74 (2009).

Summary

• The universal function of the internal energy was determined at the unitarity limit

- The other thermodynamic functions were derived from the thermodynamic relationship
- The critical parameters were determined at the superfluid transition temperature

M. Horikoshi, S. Nakajima, M. Ueda and T. Mukaiyama, Science, **327**, 442 (2010).

The team (ERATO project)

Masahito Ueda (project leader)

T. Mukaiyama M. Horikoshi (Group leader) (Postdoc) S. Nakajima (Ph.D student)

Unitary gas Efimov physics

Equation of state for a unitary Fermi gas

$$\Delta E = \Delta N E_{\rm F} (n) f_E (T/T_{\rm F})$$

$$\Delta S = \Delta N k_{\rm B} f_S (T/T_{\rm F})$$

$$E_{\rm F}(n) = \frac{\hbar^2}{2m} \left(6\pi^2 n\right)^{2/3}$$

$$p = -\left(\frac{\partial \left(\Delta E\right)}{\partial \left(\Delta V\right)}\right)_{\Delta N, \Delta S}$$

$$\Delta S$$
=一定 $T/T_{\rm F}$ =一定

$$p = -\left(\frac{\partial \left(\Delta E\right)}{\partial \left(\Delta V\right)}\right)_{\Delta N, T/T_{\rm F}} = -\Delta N f_E\left(T/T_{\rm F}\right) \left(\frac{\partial \left(E_{\rm F}\left(n\right)\right)}{\partial \left(\Delta V\right)}\right)_{\Delta N, T/T_{\rm F}}$$

$$= \frac{2}{3} n E_{\rm F}(n) f_{\rm E}(T/T_{\rm F})$$
$$= \frac{2}{3} \varepsilon(n)$$

