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BEC in a cold atom system

1995 Realization of atomic gas Bose-Einstein
condensation
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Science 275, 637 (1997).
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BEC in a cold atom system

Cold atoms are

« very dilute (10''~10'% cm3),
» with no impurities, no defects.

=mmmmP Amenable to simple theoretical description

J. R. Ensher, et al.,
Phys. Rev. Lett. 77, 4984
(1996).
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5% deviation of critical temperature — 3% shift due to finite number correction
from theoretical predictions - 2% shift due to interaction




Inter—atomic interaction is.tunable !

Feshbach resonance

There are two channels corresponding to different
spin states.

Resonance occurs when open and closed channel
are energetically degenerate.
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bound state Closed (bound) channel

Scatleﬂng length a/de v ?

Open (scattering) channel

Magnetic field (G)

S. Inouye, et al.,
Nature 392, 151 (1998).




LLoss near Feshbach resonance

loss due to
vibrational quenching
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Vibrational quenching S. Inouye et al.,
Nature, 392, 151 (1998).




ultracold fermionic atoms

1999 Fermi degenerate gas

T/T F;3

Collision channel

|dentical bosons : /=0(s-wave), [=2 (d-wave), ...
|dentical fermions: /=1 (p-wave), /=3 (f~wave), ...

ultracold : s-wave is the dominant collision channel.

=FERMI ==) |dentical fermions do not collide.
T/Te=0.5
Think about two-component fermions . '

At the Feshbach resonance for ' and ' ,
no loss occurs due to Pauli exclusion principle.
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Therefore two-component fermions are stable even at
a Feshbach resonance.



We are able to prepare an interacting
(reasonably stable) two-component Fermi gas of

atoms with an arbitrary interaction strength !!




BCS—BEC crossover

Idea : BEC and BCS type superfluid are the opposite extreme of the same phase

BCS limit Crossover BEC limit

Pairs of fermions - Cooper pairs Tightly bound bosons - molecules
Momentum space pairing Real space pairing




momentum distribution measurement

ﬁbsorption imaging
Bosonic case

A 1 |

pure BEC

=

Condensed or not?
See the bimodal profile !!

... unfortunately this scheme does not work.




Fermion pair condensate
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G. Veeravalli et al.
Phys. Rev. Lett.
101, 250403 (2008)

BCS limit

momentum
correlated pair




111 ) ' Vo4
projection

C. A. Regal et al.
Phys. Rev. Lett., 92, 040403 (2004)

If we sweep the magnetic field

- slow enough to convert atom pairs into molecules
- fast enough such that the momentum distribution
of the projected molecules reflects that of pairs

prior to the sweep

magnetic field
sweep




BCS—-BEC crossover (experiment)
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Magnetic Field [G]

M. W. Zwierlein et al., PRL

C.A. Regal et al.,, PRL 92, 92, 120403 (2004)
040403 (2004)

T/Ty is measured under ideal gas T/T, was measured at 1025 G (magnetic
condition (magnetic field where a=0). field where a=-4000¢,).

Adiabatic does keep entropy constant, Again, 7/T is not the one measured

but not 7/T. | at unitarity, but somewhere
different.




Conventional thermometry
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Let the cloud expand.  Em) Fit the profile with a reasonable function.

5/2

3N T
niz) =— -Li —5 ' €X
(2) \/;UTF,Z (TF ) 512 p(

This scheme is good only when interaction energy << kinetic energy.




Thermodynamic

of an ideal Fermi gas




Thermodynamics of an ideal Fermi gas

Thermodynamic behavior of an ideal Fermi gas is
described by its temperature 7" and density x.




I hermodynamic of an ideal Fermi gas

Fermi-Dirac distribution
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I hermodynamic of an ideal Fermi gas
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I hermodynamic of an ideal Fermi gas

= E
Internal energy : — = fE T—

NE,

Helmholtz free energy : _E —
N. F Dimensionless

u functions
E— u,ideal E

kT
\ Entropy N = — fS zdeal( F ) /

Material specific parameter, such as m, is taken up by E; (7%).
(Shape of the functions do not depend on the particle’s nature.)

Chemical potential :

‘ Universal thermodynamics




Thermodynamic

of an interacting Fermi gas




Ultracold, dilute, interacting Fermi gases

- ultracold : s-wave is the dominant channel.

=) @ collide only with =

- dilute : details of the potential is much smaller than n-13

==> The collision process can be described by a single
parameter, so-called scattering length a..




Ihermodynamic of an interacting Fermions

Fermi gas with interaction

|deal Fermi gas

E
i—waleaz arxh ‘ —=fE(kBT’E mt(a ))

NE, o NE;




Ultracold dilute Fermi gas

Remember the fact that a, is tunable!!

Then, what happens when...

b

This situation is called unitarity limit.




Unitarity limit and Universality

a, drops out of the description of the thermodynamics.

Thermodynamics depends only on the density » and temperature 7.

Universal thermodynamics holds again...?




Ihermodynamic of an interacting Fermions

Fermi gas with interaction

E
E ——
— i %F > NE = fz (kBT, EF,U(a))

When the scattering length
diverges...

Ideal Fermi gas

NE

E
NE— (kaTs Ee. DHQ)= Jr e (kT Er )= T

kT
L

There is a hypothesis that the thermodynamic functions
again have the universal form.

‘ Universal hypothesis




Universal thermodynamics

According to universal hypothesis, all thermodynamics should obey
the universal functions:

= T =
Internal energy :

Helmholtz free energy :

Dimensionless
universal functions,
(shape of the function
is different from those
for an ideal gas)

\\ Entropy : j

System looks like a non-interacting Fermi gas.
(no other dimensional parameters involved in the problem)

Chemical potential :




Universal thermodynamics

Bertsch’s Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body
system composed of spin 72 fermions interacting via a
zero-range, infinite scattering-length contact interaction.

Egs=f(N,V,n/I)=N-EFX§/ pure number

Besides pure theoretical curiosity, this problem i ’
is relevant to neutron stars!

Wikipedia




Universal thermodynamics

H. Hu, P. D. Drummond & X.-J. Liu,
Nature Physics 3, 469 - 472 (2007)

B Duke SLiexpt; ref. 8
®  JILA 0K expt; ref. 7
Rice 6Li expt; ref. 6

e Qur theory

=== |deal gas




f=1——1 is still not known-*-

T is constant over the cloud (thermal equilibrium).
E. depends on the position (local density).

k,T
E

F

—)

is position-dependent.

Y k,T k,T

E; (no) E. [n(r)] = i (no)

Global measurement only gives the integration of
all the different phases.




Goal of this experiment

Measurement of local thermodynamic quantities
and

the determination of the universal thermodynamic function.

e(r) L
(0 By [ () _fE(TF [n(r)])
¢ . local energy density
E, =k,T,




Experiment setup




Deceleration and trapping

MOT (magneto-optical trap)
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Optical dipole trap

Optical dipole trap




Evaporative cooling

molecular BEC
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Determination of local energy &(r)

£(r) = JelT/T,]
n(r) E.|n(r)] flT/ 1] A

density profile

<> —_ ()

Useful equations :

2
- Equation of state of unitary gas : p (r ) — g E r)

- mechanical equilibrium (eq. of force balance) :

Vp(r) +n(r)V V(€)= 0

n(r) = p(r) = &(r)




Determination of temperature T

£(r)
n(r) E. [n(r)]

— fE[T/TF]

7 ‘
p (r) = 58 (r) and Vp(m)+n(r)VV, (r)=0 mmsp F_ =2x Epotential

Adiabatic B-field sweep to turn off ==) entropy S
the interaction
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{ Etotal \E SJ — Etotal \& T

!

1/T = 3S/0E

Le Luo and J.E. Thomas,
J Low Temp Phys 154, 1 (2009).




Our scheme

VPO MO (6) =0




Experimental determination of f.[T/T; |

=
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[
M. Horikoshi, S. Nakajima, o1 ey
M. Ueda and T. Mukaiyama, 9

Science, 327, 442 (2010). About 800 images are analyzed.




Verification of the determined f,.[T/T; ]

1. Energy comparison

1) total 2 x b potential ‘ L pot = Einternal

3 2 2
v Potential energy par particle : EpOt = Ema)z S B
Comparison <

v’ Internal energy par particle : £ =fn£F (n) f [H]dV/N
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Verification of the determined f,[T/T;]

2. Effective speed of the first sound

Light pulse to make
density perturbation




Verification of the determined f, [ T/T |

2. Effective speed of the first sound

Propagation time

0.1ms

1.1ms

2.1ms

3.1ms

4.1ms

5.1ms

6.1ms

7.1ms




Verification of the determined f,.[T/T; ]

2. Effective speed of the first sound

Unitary gas shows hydrodynamic behavior due to the large collision rate

: : > | frdxdy
Effective speed of the first sound : #[n,0]=

-
op
m( | — | dxd
/f ( on ) y z=0
) [ P. Capuzzi, PRA 73, 021603(R) (2006) ]

p=§5 OCfE[T/TF]

Comparison

Experiment




Verification of the determined [ T/T;. |

2. Effective speed of the first sound

Experimental values vs. calculated values from f.[0]

u 1,Mea§. =u 1,Calc

Uy Meas, [TIM/S]




#=7he universal function of the internal energy f.[T/T; ]

£
Universal hypothesis : p—— i
n

F

Equation of state : p = 58

Mechanical equilibrium :Vp(r) + n(r)VV, (r)=0




Bimodal distribution of a fermion pair condensate

Bimodal distribution

Unitarity limit

” BEC side BCS side
/‘ \ ~§ Preformed pair

\
\

ound molecule
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Magnetic field [Gauss]




Condensate fraction vs Temperature
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Universal thermodynamic functions

Internal energy

fE = fF —Hf;
S = (55 -261)/3
fS = _fF’

Helmholtz free energy Chemical potential




In the case of unitary gas, equation of state p(r)=2¢&(r)/3
IS available (exceptional case !!) which enable us to
measure local thermodynamic quantities.

Then, how can we determine local thermodynamic quantities without
help of equation of state ?

‘ -Box potential

- High resolution local probe

W. S. Bakr et al.Nature 462, 74 (2009).




Summary

» The universal function of the internal energy was
determined at the unitarity limit

» The other thermodynamic functions were derived from the
thermodynamic relationship

» The critical parameters were determined at the superfluid transition
temperature

M. Horikoshi, S. Nakajima, M. Ueda and T. Mukaiyama,
Science, 327, 442 (2010).
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Equation of state for a unitary Fermi gas

-

AE = ANE.(m) . (T/T)

AS = ANk, f; (T/T;)

p=_

[EF (n)=2"l;(6nzn)”]
3 (AE)
3(AV)

p=_

AN ,AS

AS=—TE =mm) T[/T=—JE

J(AE)
3 (AV)

AN, T/T;

- ZnE, ()£, (T/T;)

- Ze(n)

3

= -ANf, (T/T;)

3 (AV)

d (EF (n )))




