Transport coefficients of causal dissipative relativistic hydrodynamics in lattice gauge simulations

格子ゲージシミュレーションによる因果的散逸流体力学における輸送係数の計算

Yu Maezawa (RIKEN)
in collaboration with
H. Abuki (Tokyo Univ. of Science)
T. Hatsuda (The Univ. of Tokyo)
T. Koide (Frankfurt Inst.)
Introduction

Properties of **Quark-Gluon Plasma**
- study early universe after Big Bang
- Heavy-ion collision experiments in RHIC and LHC

To extract significant information after the collision,

Relativistic hydrodynamics: indispensable

Key issue for reliable calculations
- **Transport coefficients** (viscosity, relaxation time ...)
 - determined from a microscopic theory

Propose: calculation of the transp. coeff. from lattice QCD simulations

Topic of this talk
- Introduction of causal dissipative relativistic hydrodynamics
 - how to determine trans. coeff. from microscopic theory
- Ratio of trans. coeff. $\frac{\eta}{\tau_\pi (\varepsilon + p)} \Rightarrow$ lattice gauge simulations
What's causal dissipative relativistic hydrodynamics?

IF: relativistic fluid is described by the **Navier-Stokes (NS) equation**.

Relativistic extension of the NS equation

\[\pi^{\mu\nu} = \eta_{GKN} P^{\mu\nu\alpha\beta} \partial_\alpha u_\beta \]

\(\pi^{\mu\nu} \): share viscous pressure
\(\partial_\alpha u_\beta \): velocity gradient
\(\eta_{GKN} \): shear viscosity

In general, \(\pi^{\mu\nu} \propto \partial_\alpha u_\beta \): Newtonian

Transport coefficients: calculated by **Green-Kubo-Nakano (GKN) formula**.

\[\eta = -\int d^3x' \int_{-\infty}^{t} dt_1 e^{\epsilon(t_1-t)} \int_{-\infty}^{t_1} dt' \langle T_{12}(x,t)T_{12}(x',t') \rangle_{\text{ret}} \]

Problems:
1) the NS eq. describes a signal propagation with infinite velocity.
2) the NS eq. is **unstable** and cannot describe equilibration processes.

→ Relativistic fluid is non-Newtonian
What's causal dissipative relativistic hydrodynamics?

Introduction of relaxation time τ_π : avoid the problems

Causal dissipative relativistic hydrodynamics

$$\tau_\pi P^{\mu\nu\alpha\beta} \frac{d}{d\tau} \pi_{\alpha\beta} + \pi^{\mu\nu} = \eta P^{\mu\nu\alpha\beta} \partial_\alpha u_\beta$$

note: η does not correspond to η_{GKN}.

Microscopic formulae for transp. coeffs.

$$\frac{\eta}{\beta(\epsilon + p)} = \frac{\eta_{GKN}}{\beta^2 \int d^3x \langle T^{0x}(\vec{x}), T^{0x}(\vec{0}) \rangle}$$

η_{GKN} : viscosity in GKN formula

$$\frac{\tau_\pi}{\beta} = \frac{\eta_{GKN}}{\beta^2 \int d^3x \langle T^{yx}(\vec{x}), T^{yx}(\vec{0}) \rangle}$$

$T^{\mu\nu}$: energy-momentum tensor

$$\langle A,B \rangle = \int_0^\beta \frac{d\lambda}{\beta} \langle A(-i\lambda)B \rangle_{eq}$$

Determination of η and τ_π from lattice QCD simulations
GKN formula and our approach

Studies of viscosity from GKN formula in lattice simulations

Temporal correlator of energy-momentum tensor

\[G_{12}(t) = \left\langle \int d^3x T_{12}(x,t)T_{12}(0,0) \right\rangle \]

extract spectral function from large \(t \) behavior

very noisy and difficult!

Our “first” approach: focus on a ratio of transp. coeffs.

\[
\frac{\eta}{\sigma_\pi (\varepsilon + p)} = \frac{G^{yx}(T)}{G^{0x}(T)}
\]

\[G^{\mu\nu}(T) \equiv T \int d^3x \int_0^{1/T} d\lambda \left\langle T_{\mu\nu}(-i\lambda, x)T_{\mu\nu}^\dagger (0,0) \right\rangle_{\text{eq}} \]

note: independent on the GKN formula

\[\text{defined as an integral to spatial and temporal direction,} \]

\[\text{we may extract clear signal without large statistics.} \]
Energy-momentum tensor on lattice

We consider pure gauge theory without dynamical quarks.

EM tensor of gluon field

\[
T_{\mu\nu}(x) = 2 \sum_\alpha \text{tr}[F_{\mu\alpha}F_{\nu\alpha}] - \frac{1}{2} \delta_{\mu\nu} \left(1 + \frac{\beta(g)}{2g} \right) \sum_{\rho,\sigma} \text{tr}[F_{\rho\sigma}F_{\rho\sigma}]
\]

\(\beta(g) \): beta function on lattice

Boyd et al., NPB469 (1996) 419.

Field strength tensor on lattice

Gluon field on lattice

\[
U_\mu(n) = \exp[iaA_\mu(n)]
\]

\[
U_{\mu\nu}(n) = \exp[ia^2 F_{\mu\nu}(n_c) + O(a^3)]
\]

Clover combination of plaquettes

\[
Q_{\mu\nu}(n) = U_{\mu\nu}(n) + U_{\nu-\mu}(n) + U_{-\mu-\nu}(n) + U_{-\nu\mu}(n)
\]

\[
\frac{1}{8} \left[Q_{\mu\nu}(n) - Q^{\dagger}_{\mu\nu}(n) \right] = ia^2 F_{\mu\nu}(n) + O(a^3)
\]
Lattice simulations at finite temperature

Parameter details

- Quenched simulation with standard plaquette action
- Lattice size: $N_s^3 \times N_t = 24^3 \times 4, 5, 6, 7, 8, 16, 24$
- Lattice coupling: $\beta = 6.0$ ($a = 0.093$ fm)
- $T / T_c = 0.5—2.0$ ($N_t = 24$ is regarded as $T = 0$)
- Statistics: 1000—4000 configurations

Behavior of EM tensor

Diagonal part: trace anomaly

$$\epsilon - 3p = \frac{T}{V} \int d^3x \int_0^{1/T} d\tau \sum_{\mu=1}^{4} \langle T_{\mu\mu}(x) \rangle_T$$

\Rightarrow Zero T subtraction

$$\epsilon - 3p = \left(\frac{T}{V} \int d^3x \tau \sum_{\mu=1}^{4} T_{\mu\mu}(x) \right)_{T} - \left(\frac{T}{V} \int d^3x \tau \sum_{\mu=1}^{4} T_{\mu\mu}(x) \right)_{T=0}$$

Typical behavior for trace anomaly, ϵ and p is obtained.

Off-diagonal part: $\mu \neq \nu$

$$\frac{T}{V} \int d^3x \int_0^{1/T} d\tau \langle T_{\mu\nu}(x) \rangle_T \approx 0$$ due to discretized rotational symmetry on lattice.
Ratio of transport coefficients at finite temperature

\[\frac{\eta}{\tau_\pi (\epsilon + p)} = \frac{G^{ij}_\pi(T)}{G_{i4}^{\pi}(T)} \]

\[G^{\mu\nu}(T) \equiv T \int d^3x \int_0^{1/T} d\lambda \langle T^{\mu\nu}(-i\lambda, x) T^{\mu\nu}(0,0) \rangle_{\text{eq}} \]

\[G_{\mu\nu}(T) \equiv V \left(\langle T^{\pi\mu}_\pi T^{\pi\nu}_\pi \rangle_T - \langle T^{\pi\mu}_\pi T^{\pi\nu}_\pi \rangle_{T=0} \right) \]

where \(T^{\pi\mu}_\pi \equiv \frac{T}{V} \int dx \int_0^{1/T} d\tau T^{\mu\nu}_\pi (\tau, x) \)

Correlator of EM tensor

\[G_{ij}(T) = \frac{1}{3} \left[G_{12} + G_{13} + G_{23} \right] \]

\[G_{i4}(T) = \frac{1}{3} \left[G_{41} + G_{24} + G_{34} \right] \]

\[G^{ij}_\pi(T) \approx G_{i4}^{\pi}(T) \]

- \(\frac{\eta}{\tau_\pi (\epsilon + p)} \sim 1 \)
- enhancement at \(T = T_c \)?
Comparison with free gas theory

Free gas theory for boson

\[m_B = 140 \text{ MeV} \]

In free boson gas case,

\[T \int d^3x \int_0^{1/T} d\lambda \left\langle T^{yx}(-i\lambda, x) T^{yx}(0, 0) \right\rangle_{\text{eq}} = \frac{p}{\beta} \]

\[T \int d^3x \int_0^{1/T} d\lambda \left\langle T^{0x}(-i\lambda, x) T^{0x}(0, 0) \right\rangle_{\text{eq}} = \frac{\epsilon + p}{\beta} \]

\[\frac{\eta}{\tau_\pi(\epsilon + p)} \rightarrow \frac{p}{\epsilon + p} \quad \frac{\eta}{\tau_\pi(\epsilon + p)} \rightarrow \frac{1}{4} \]

at high \(T \) limit

Behavior is similar, but magnitude is large.

1. Ratio goes to zero at \(T \rightarrow 0 \)?
2. Ratio goes to 1/4 at high \(T \)?

Lattice gauge simulations

This work

\[\frac{G_{ij}}{G_{ij}} \quad \circ \]

Simulations at wider \(T \) range.
Summary and outlook

Relativistic fluid should be a non-Newtonian fluid because of causality and stability.

→ the GKN formula is not applicable to calculate the transp. coeffs.

\[
\frac{\eta}{\beta(\varepsilon + p)} = \frac{\eta_{\text{GKN}}}{\beta^2 \int d^3x \left(T^{0x}(\vec{x}), T^{0x}(0) \right)} \quad \frac{\tau_\pi}{\beta} = \frac{\eta_{\text{GKN}}}{\beta^2 \int d^3x \left(T^{yx}(\vec{x}), T^{yx}(0) \right)}
\]

→ \(\frac{\eta}{\tau_\pi(\varepsilon + p)} \) can be calculated independently of the GKN formula.

Calculations of the ratio from correlators of EM tensor in lattice gauge simulations.

→ temperature dependence of the ratio
 • enhancement around \(T_c \)?
 • behavior is similar to free boson gas, magnitude is large.

Outlook

• Simulations at wider \(T \) range for a comparison with the free boson gas theory.

• Calculations of \(\eta_{\text{GKN}} \) from the GKN formula to determine \(\eta \) and \(\tau_\pi \), separately.