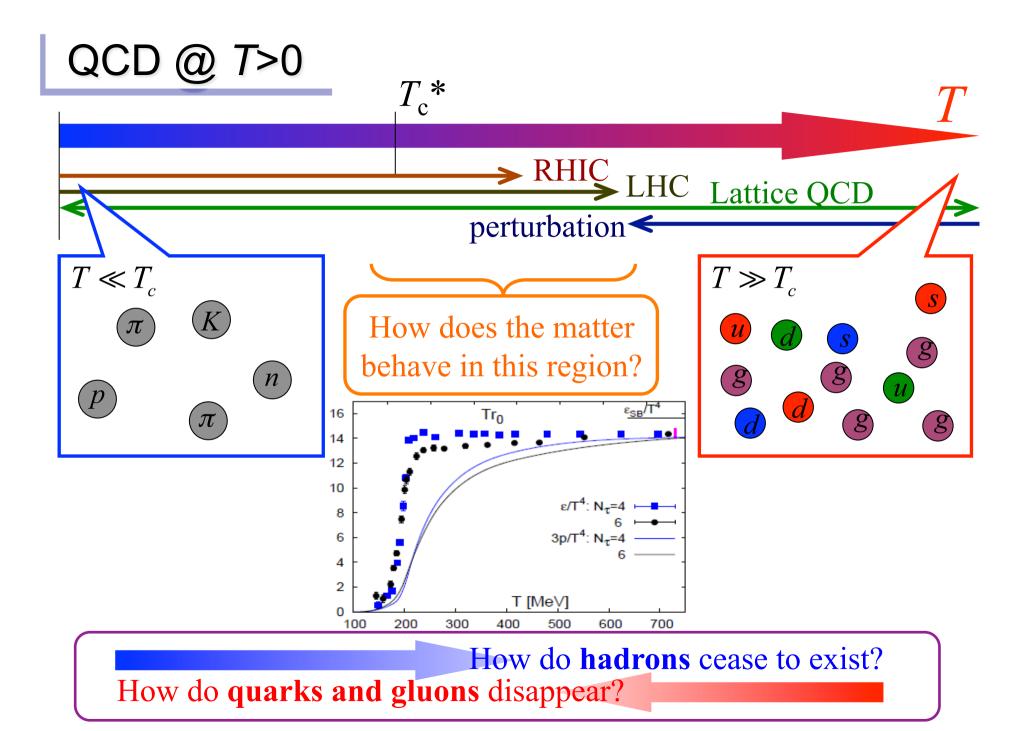
Netsuba workshop, Aug 30, 2010

Lattice Study of Quark Self-Energy in the Deconfined Phase

非閉じ込め相におけるクォーク自己エネルギーの 格子QCDによる解析

Masakiyo Kitazawa (Osaka U.)

O.Kaczmarek, F.Karsch, MK, W.Soeldner, in preparation; MK, et al., in preparation.



Quarks at Extremely High T

Klimov '82, Weldon '83 Braaten, Pisarski '89

•Hard Thermal Loop approx. (
$$p$$
, ω , $m_q \ll T$)
•1-loop ($g \ll 1$)

$$S(\omega, \mathbf{p}) = \frac{1}{\omega \gamma_0 - \mathbf{p} \gamma_0 - \Sigma(\omega \mathbf{p})}$$

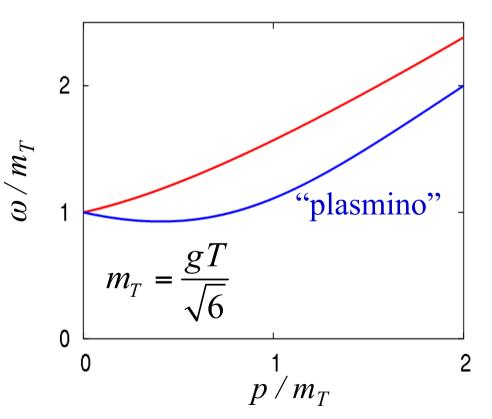
•Gauge independent spectrum

•2 collective excitations having a "thermal mass" $\sim gT$

• width $\sim g^2 T$

 $\Sigma(\omega, \mathbf{p}) =$

•The plasmino mode has a minimum at finite *p*.

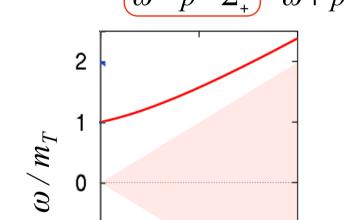


Decomposition of Quark Propagator

 $S(\omega, \mathbf{p}) = S_{+}(\omega, \mathbf{p})\Lambda_{+}(\vec{\mathbf{p}})\gamma^{0}$ + $S_{-}(\omega, \mathbf{p})\Lambda_{-}(\vec{\mathbf{p}})\gamma^{0}$

$$\Lambda_{\pm}(\mathbf{p}) = \frac{E_{\mathbf{p}} \pm \gamma_0 (\mathbf{p} \cdot \vec{\gamma} + m)}{2E_{\mathbf{p}}}$$

$$E_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$$
Free quark with mass m
$$\sum_{\mathbf{p}} \left((\mathbf{p}, \mathbf{p}) \right) \left(\frac{\Lambda_{\pm}(\mathbf{p}) \gamma^0}{2\pi m^2} + \frac{\Lambda_{\pm}(\mathbf{p}) \gamma^0}{2\pi m^2} \right)$$



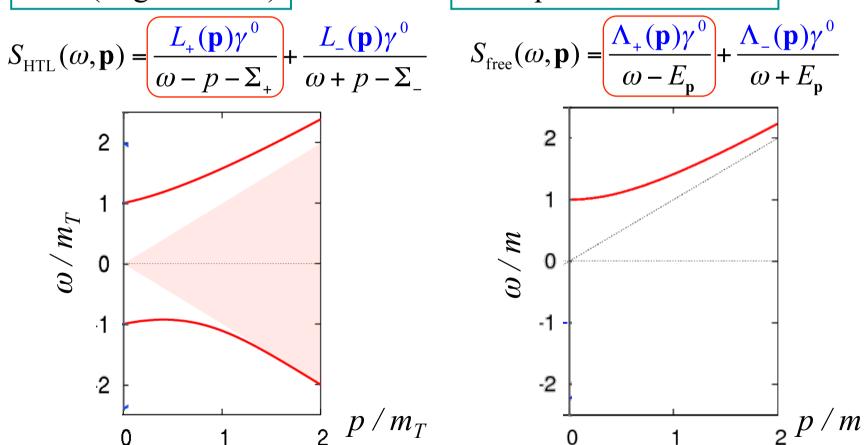
1

HTL (high *T* limit)

-1

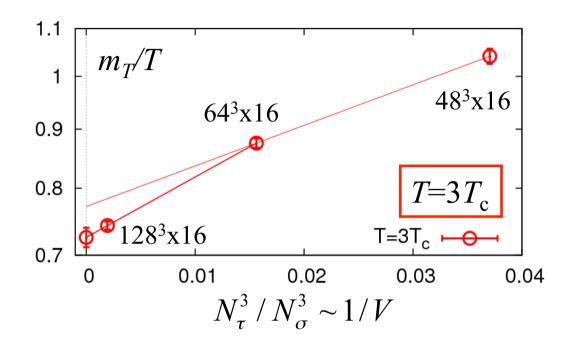
2

0



Lattice Study of Quarks above $T_{\rm c}$			Karsch, MK, '07, '09		
quenched approximationclover improved WilsonLandau gauge fixing		$\begin{bmatrix} T/T_c \\ 3 \end{bmatrix}$	β 7.45	$N_x^{\ 3} x N_t$ 128 ³ x16 64 ³ x16 48 ³ x16	
		1.5	7.19 6.87	48 ³ x12 128 ³ x16 64 ³ x16	
• 2-pole ansatz for $\rho_+(\omega)$.		1.25	6.64 6.72	48 ³ x16 48 ³ x12	
$\rho_{+}(\omega) = Z_{1}\delta(\omega - E_{1}) + Z_{2}\delta(\omega + E_{2})$ 4-parameter fit $E_{1}, E_{2}, Z_{1}, Z_{2}$	¹⁵	1.25		$ \begin{array}{c} 64^{3}x16 \\ 48^{3}x16 \end{array} $	
$Z_{2} \qquad Z_{1} \qquad Z_{1} \qquad Z_{1} \qquad Z_{1} \qquad E_{1} \qquad \omega$	10 10 5 0 -0.5			0.1 0.3 0.45 0.8 0.5 0.45 0.8 0.45 0.8	/T

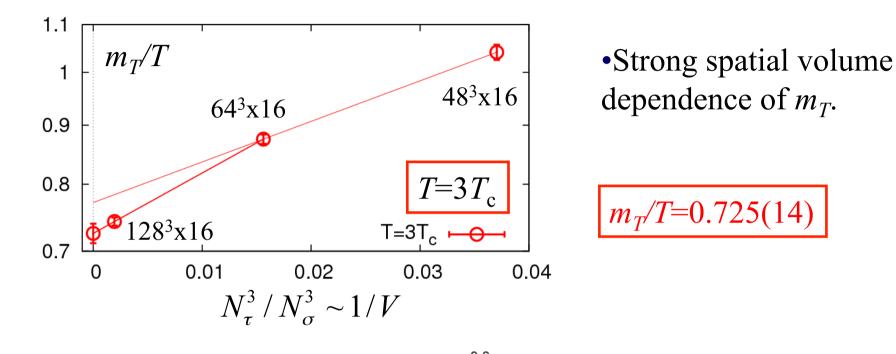
Spatial Volume Dependence of m_T

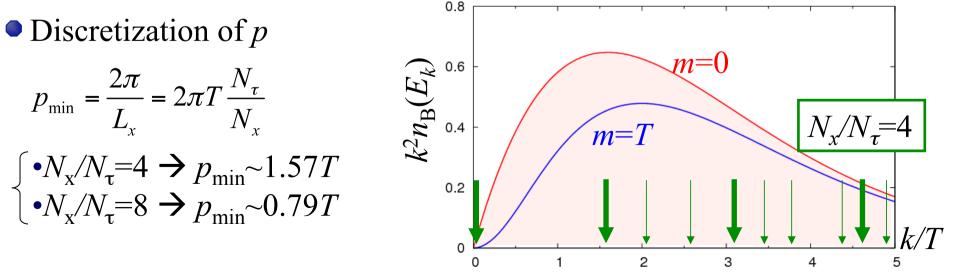


•Strong spatial volume dependence of m_T .

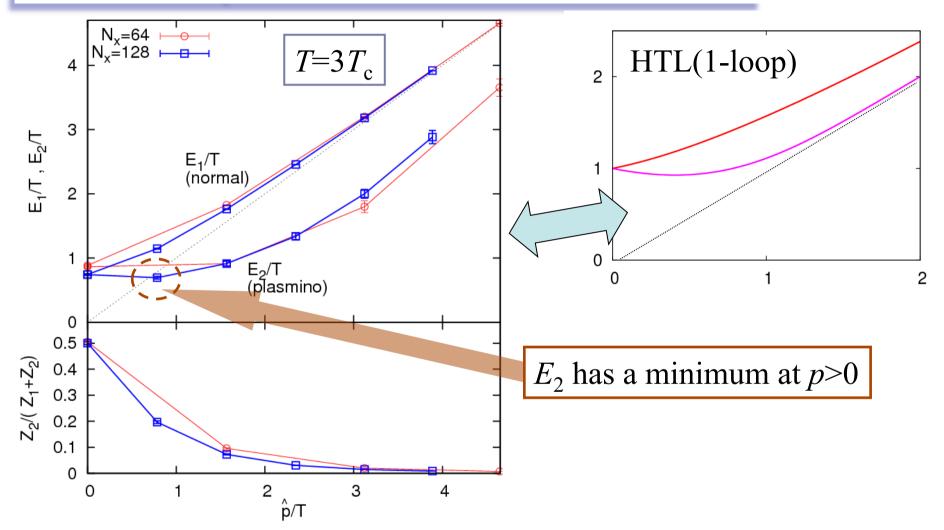
$$m_T/T=0.725(14)$$

Spatial Volume Dependence of m_T



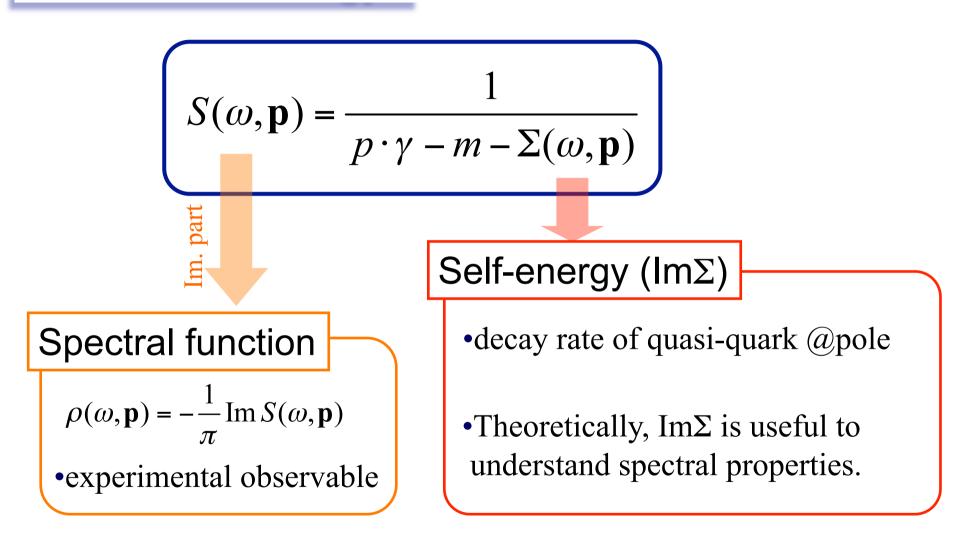


Quark Dispersion on 128³x16 Lattice

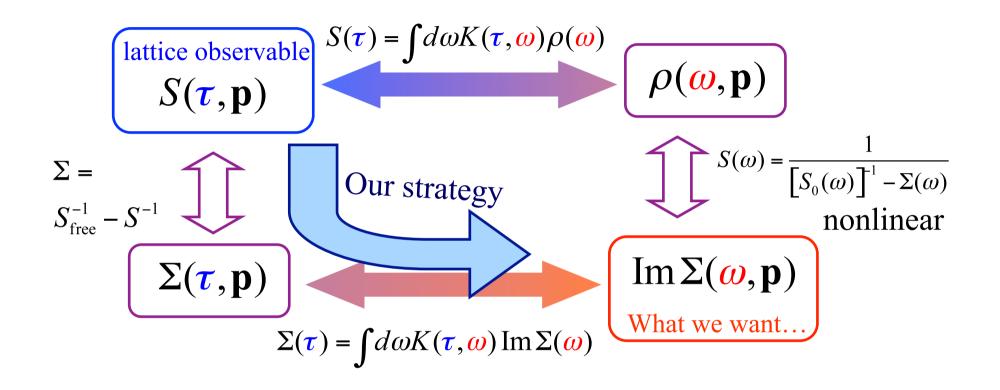


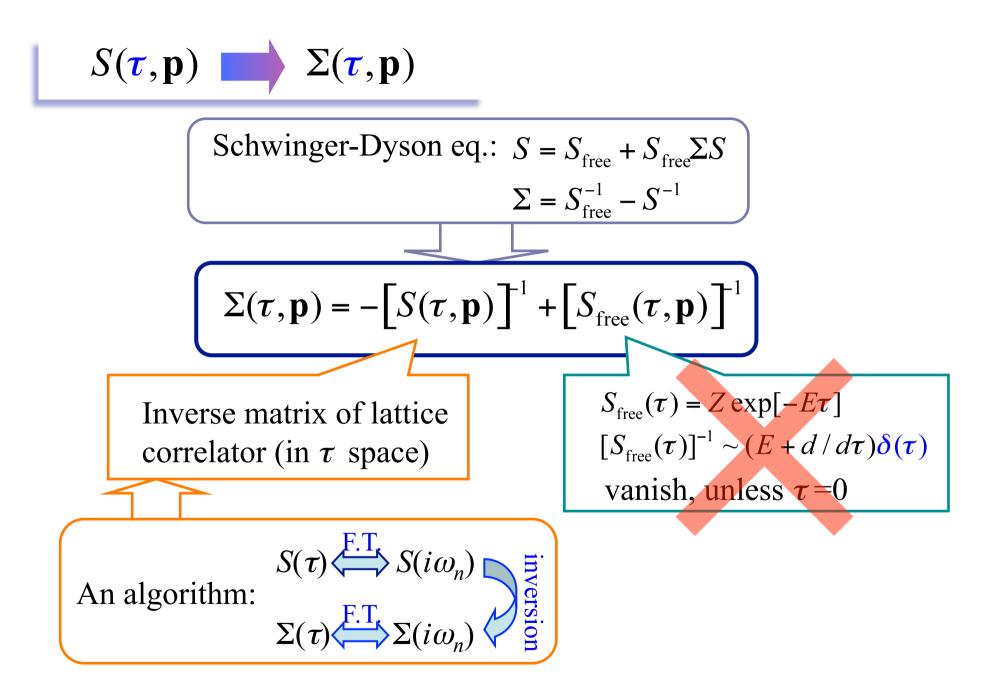
Existence of the plasmino minimum is strongly indicated. *E*₂, however, is not the position of plasmino pole.

Quark Self-Energy

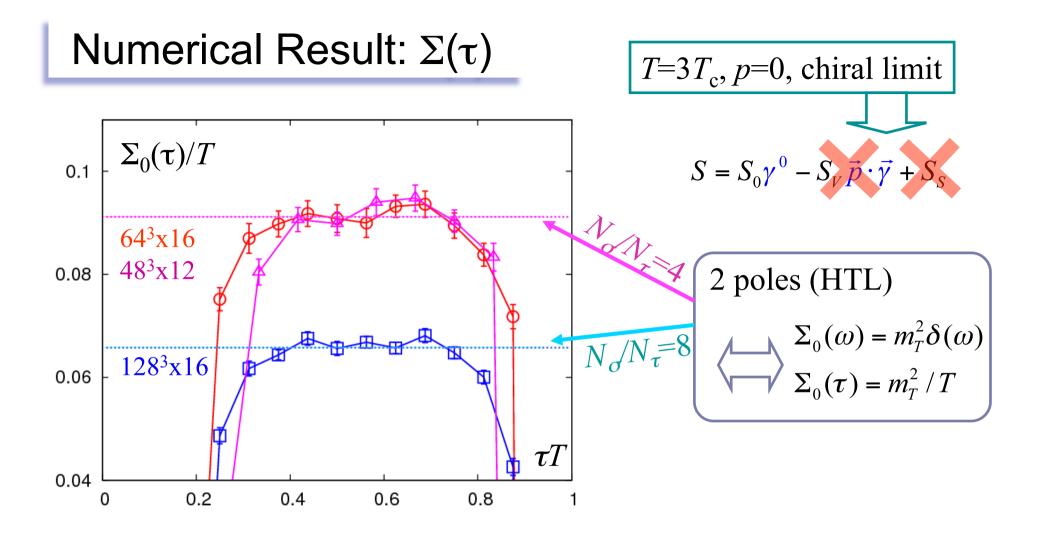


Correlator & Self-Energy





Note: $\Sigma(\tau)$ is not the fermion matrix. Inverse, after statistical average.



Σ(τ) is consistent with the values expected from the pole ansatz (HTL self-energy) for τ T~1/2.
 Strong deviation near the source.

Summary

We analyzed the quark self-energy in imaginary time above T_c in quenched lattice QCD.

The behavior of $\Sigma(\tau)$ is consistent with the one predicted by the two-pole ansatz.

Future Plans

- •MEM analysis of $\text{Im}\Sigma(\omega)$ with much larger N_{τ} .
- •Calculation of decay rates of quasi-particles.
- •Exploit the combined information of $\rho(\omega)$ and $\Sigma(\omega)$ in the analytic continuation of the propagator.
- •Application to other channels, such as gluons, mesons, and etc.

Choice of Source

• Wall source, instead of point source

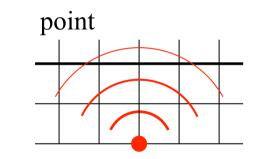
• point:
$$S(\mathbf{p} = \mathbf{0}, \tau) = \sum_{\mathbf{x}} \langle \psi(\mathbf{x}, \tau) \overline{\psi}(\mathbf{0}, 0) \rangle$$

• wall : $S(\mathbf{p} = \mathbf{0}, \tau) = \frac{1}{V} \sum_{\mathbf{x}, \mathbf{y}} \langle \psi(\mathbf{x}, \tau) \overline{\psi}(\mathbf{y}, 0) \rangle$

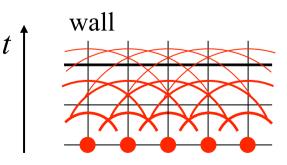
same (or, less) numerical cost
quite effective to reduce error!! Quality of data on 128³x16 lattice is about 3 times better than on 64³x16.

 $\sqrt{8}$

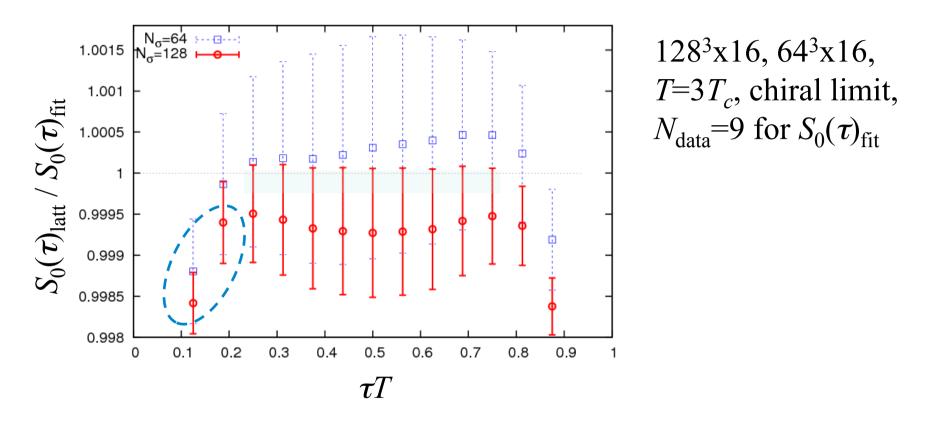
What's the source? $K = \not D - m_0$ $K\phi_{result} = \phi_{source}$ $\phi_{result} = K^{-1}\phi_{source}$



t



Check 3 : Correlator & Fitting Result



- It seems that there exists a contribution of a pole with an energy of order a^{-1} and with a negative residue.
- Due to this lattice artifact, datapoints near the source cannot be used.
- Much finer lattice is needed to improve N_{data} .

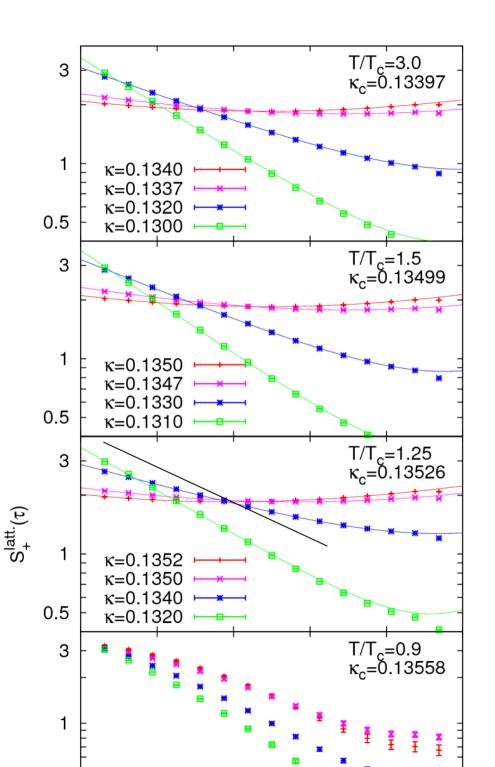
Below $T_{\rm c}$

 $C_{+}(\tau)$ for 48³x16 lattices

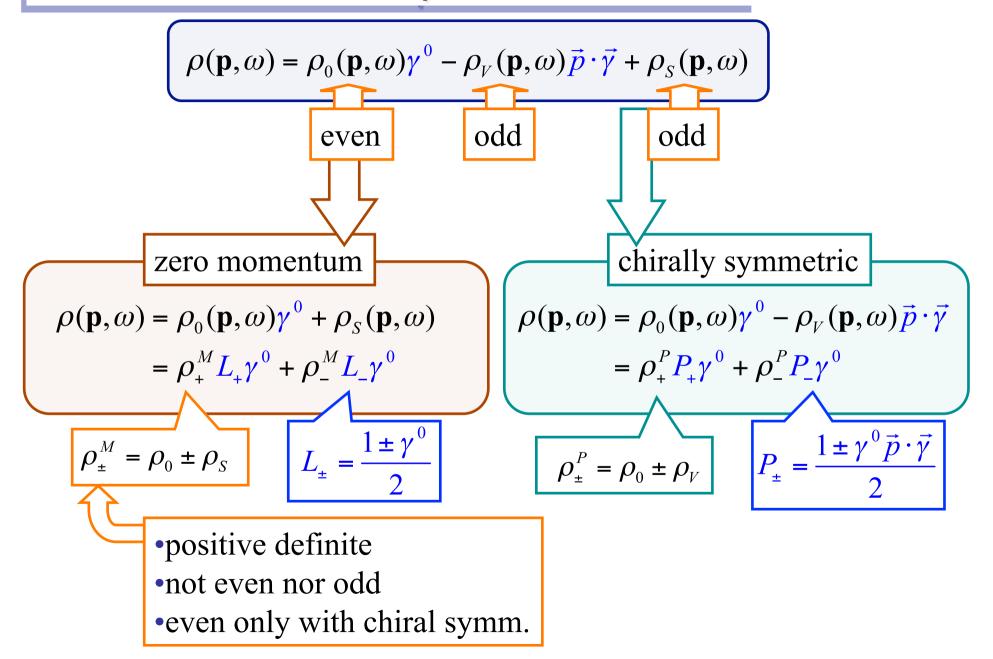
 $T/T_c = 3, 1.5, 1.25, 0.93, 0.55.$

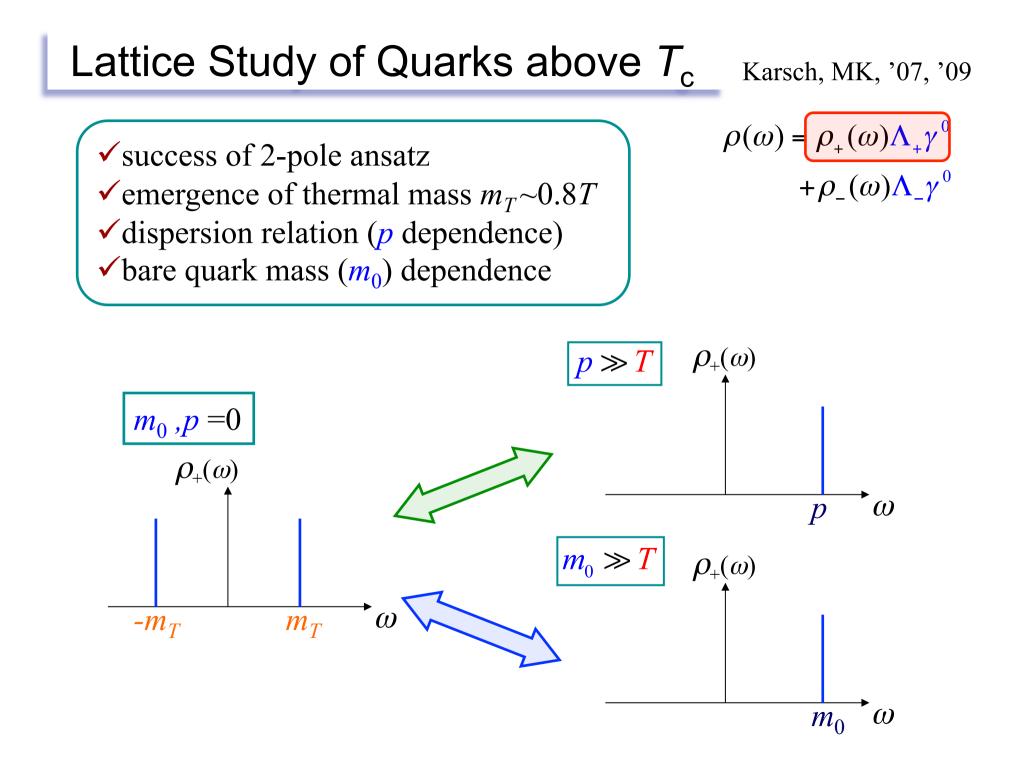
Quark correlator below T_c

•is concave upward.
•indicates a negative norm.
•does not approach the chiral symm. one in the chiral limit.



Dirac Structure of Spectral Function





Moment Expansion

$$S(\tau) = \int_{-\infty}^{+\infty} d\omega \frac{\cosh \omega (\tau - 1/2T)}{\cosh \omega / 2T} \rho(\omega)$$
Taylor expand

$$\cosh \omega (\tau - 1/2T)$$

$$S(\tau) = \sum_{n} (\tau - 1/2T)^{n} \frac{1}{n!} \int_{-\infty}^{+\infty} d\omega \left(\frac{\omega}{T}\right)^{n} \frac{\rho(\omega)}{\cosh \omega / 2T}$$
• If $\rho(\omega)$ vanishes for $|\omega| > \Lambda$, higher order terms behave $< \frac{1}{n!} \left(\frac{\Lambda}{2T}\right)^{n}$

Moment Expansion

$$S_{0}(\tau) = \int_{-\infty}^{+\infty} d\omega \frac{\cosh \omega (\tau - 1/2T)}{\cosh \omega / 2T} \rho_{0}(\omega)$$
Taylor expand

$$\cosh \omega (\tau - 1/2T)$$

$$S_{0}(\tau) = \sum_{n} (\tau - 1/2T)^{n} \frac{1}{n!} \int_{-\infty}^{+\infty} d\omega \left(\frac{\omega}{T}\right)^{n} \frac{\rho_{0}(\omega)}{\cosh \omega / 2T}$$
• If $\rho(\omega)$ vanishes for $|\omega| > \Lambda$, higher order terms behave $< \frac{1}{n!} \left(\frac{\Lambda}{2T}\right)^{n}$
Quark correlator for $p=0, m_{0}=0$

$$midpoint subtracted$$

$$\int_{0}^{0.06} \int_{0}^{0.06} \int_{0}^{0} \int$$

1

Quark Quasi-Particle Peaks

- 2-pole ansatz well reproduces $S(\tau)$ over wide ranges of $m_0 \& p$. Gaussian ansatz does not.
- MEM analysis also supports the existence of quasi-particle peaks.

Quark spectrum near but above T_c most probably has two sharp peaks (normal & plasmino).
 Analysis with the 2-pole ansatz would grasp qualitative behavior of the spectrum.

