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Introduction

 Important feature of QCD

— Strong coupling gauge theory
— Asymptotic freedom, dynamical chiral symmetry breaking
— Quark confinement/ color confinement

Vi) = —cSm) o d Fr(r)
/ (?) = —U . +ar F(?‘) _ _i_Lr(_r) — _C?rJYI\*IQ P ((1 g > U)
ar T
31 -=I: [ l—-l—| | I I Iﬁ_
_ #
2b hIer e
Cornell
1 i
= t 1 R
s ° T 0 g
I
3 | - >
4L — R
0.5 1 1.5 2 25 3
riry

=>»The dual superconductivity picture can be promising mechanism for

qguark confinement
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Dual super conductivity picture for quark confinement
Nambu(1974), 'tHooft(1975) ,Mandelstam(1976)

e Super conductivity (type I) e dual super conductivity picture for
c : Yang-mills theory
e Cuper pair

— Magnetic monopole
condensation

=» Missner effect

— formation of a hadron string
(electric flux tube)

=> Missner effect

Magnetic flux tube = monopole—
monopole connections

= linear potential between =>linear potential between quark-
monopole-monopole quark potential

< Electro-magnetic duality >
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Dual superconductor picture from lattice studies

Quark confinement follows from the area law of the Wilson loop average
[Wilson,1974]

no GF

Non-Abelian Wilson loop <tr {fﬁ’ exp {-‘igjé fE;_rf“ﬁf“(;'z_r)}] > ~ e TINAlS
C

YM

Numerical simulations support this picture:

— Abelian dominance & oppe =~ ona (92 £ 4)%
e [Suzuki & Yotsuyanagi, PRD42,4257,1990]
— (Abelian) Monopole dominance < Gmonopole = O abel (95)%
e [Stack, Neiman and Wensley, hep-lat/9404014],[Shiba & Suzuki, hep-

lat/9404015] ‘ SU(2) case

MAG .
Abelian-projected Wilson loop <exp {ig ?4 d:z:“ﬂi(:z:)} > ~ e~ %4vbellS| 17
Jo YM
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Dual superconductor picture from lattice studies (cont’)

* Center vortex dominance [Greensite , xxo0/

=>» These are obtained by using special gauge such as maximal Abelian gauge
(MAG), Laplasian gauge, maximal center gauge.

<~  gauge dependent,
color symmetry is broken

e We have given a new description of the lattice Yang-Mills theory
a la Cho-Faddeev-Niemi-Shabanov (CFNS) decomposition

— SU(2) case :@r3645 67-74(2007), PLB653 101-108(2007)

— SU(3) case: @r3669:107-118(2008)PoS(LATTICE 2008)268
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Introduction (cont’)

We have given a new procedure called reduction for obtaining a
gauge-independent magnetic monopole from a given Yang-Mills

field.

o quark-quark potential from
Wilson loop operator

« gauge-independent
“Abelian” Dominance

 The decomposed V field
reproduced the potential of

original YM field.
Orull ~ oy (93 £16%)

gauge-independent
monopole dominance

The string tension is reproduced
TV, ~ Tronopole (94 £ 9%)ole part.

O full ™~ Omonopole (88 =+ 13%)

WiR)

\|  YMfield

P
T x
- W - -
= L]
*

16%-lattice,

| f=2.40,
.| 50conf

V field

)ole part

.
0 1

RIGDEFRETDIGHA



Introduction (cont’)

e The magnetic monopole plays a central role in quark confinement.
=» Investigation of magnetic monopoles as a quark confiner

=>»study of the relations monopoles and phase transition of
confinement and deconfinement

(@ CONTENTS:

«(gauge invariant) magnetic monopole loops and
contribution to string tension

‘magnetic monopoles in topological Yagn-Mills
configurations

«Monopole loops in lattice data

Conclutions and discussion
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Decomposition of link variable

e (Can we obtain a gauge independent decomposition of the link
variable U=XV, which reproduces the V“Abelian” dominance
for Wilson loop?

e V corresponds to the conventional “Abelian” part.

e V and X transform under the SU(N) gauge transformation

* Non-Abrelian Stokes’ theorm e.g4. K,-I. Kondo PRD77 085929(2008)

Wc[A] = trPexpig §C dx#A, (x)/tr(1)
= [[du(@]cexpig$_Vux)

N I [du(8)]5 expig I AS#F V] C

S:C=0S

Viu(x) = (A, SIALIA, E)
BBOEFHEZOR

-—-“



A new description of lattice Yang-Mills theory

PLB64S 67-74(2007), PLBES3 101-108(2007) 4
Kondo-Shibata, arXive:0801.4203[fiep-th]; WelU] = Tr| P[] Uxu [/Tr(D)

X X+u)eC
» Defining equation for the
decomposition U=XV for given Ux,u = Xx,qu,u
link variables U and color filed n

Vo,ullotpy =N Vz

trng{ Xz, — Xl,p,}] =0

 Reduction condition defines
equipollent theorem

Q, € G = SU(N)

n; = argming Fp
Frln, U] = ¥y trlneUs,un 4 101,

Wc[V] = Tr|:P ] vx,ﬂ}m(l)

X, X+u)eC

Wc[U] = const.W¢[V] !
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Wilson loop operator & magnetic monopole on
a lattice

* Non-Abrelian Stokes’ theorm cg. K.-I. Kondo PRD77 085929(2008)

Wc[A]

tr|: Pexpig 3§ dx#A,(X) :|/tr(1) = j[du(é)]z exp{j
C

Jlou@s exp {ig, Mgt (k.20 + ig [N v |

Ez = *d@zA‘l = O % @zA_l,Nz = 5@2A‘1
D-dimensional Laplacian A = dé + &d

S:C=0S

dSev F,, [V]}

s : the vorticity tensor with support on the surface ¢ sppaned by Willson loop C

6 (¢) = [ a5 (x X))
4 )
|_| > (W V]) = (We[Mono]) = ( exp Z ke =
. 1 1
e | e

Fa’;,uy = a'r‘gTT[(l + n:c)V;c,qu_F” v
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Property of monopoles on lattice

oy = k= e 8,0 « Non-zero Monopole currents
B o BT gy POV can be identified with
Foyw = 0rgTr{(L 4 00)Vo Vg, Vo Vi geometrical objects.
— Nonzero current & edge

— end points (dual lattice site)
< vertices

— Sign (strength) of current &

* Invariant under SU(2) gauge
transformation.

 Monopole currents are define as direction (waite)
link variables on the deal lattice « Current conservation
(shifted by a half integer for & The same number of Incoming
each direction.) and outgoing links

* They take integer values =» =monopole current construct
n,,={-2,-1,0,1,2} loops

« Current conservation: _
€DpMa = Possible verteces

7 p==x1,..,£+4
with beein nw7_u == nm—u,p,
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Monopole contribution to the Wilson loop

ki 7
(We[V]) = (We[Monol]) = <exp{ 'L;/
U4
ey = Z el WA (x — ¥ {/A_l(s . Sf)
o(y)eX e 0

» Wilson loop of the monopole part decomposed into the contribution of each
monopole loop, since monopole currents are decomposed into loops.

» The small monopole give zero contribution, since integral by opposite direction of
current canceled each other. =»The large cluster of monopole loops contribute to
the Wilson loop.

Possible monopole clusters e
[ 2 \ ,7 »
N\ %

/ VA \ — )
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Monopoles from topological configurations
in the SU(2) Yang-Mills theory

* Investigation of monopole loop generated from some of known
topological configurations in the SU(2) Yang-Mills theory such as merons

and instantons
* which are characterized by the gauge-invariant topological index,
— topological charge (density) , magnetic charge (density)

 Link variable is calculated by path ordered product of the parallel trans porter .
T+eu
W, = P exp (—ig / Al da:“) P H U/ (5)

/N, - —ige + 1
IUm{iV(j):exp< g {A,L(x—kie,u)#—Aﬂ(x—k]N eu)})

2 N

* The lattice is set up as finite volume box with open boundary condition.
; IInsfl_dledthe b(;); “zk VE-iI’Iab|e |ds_s_et up by solution nz = argming Fp
olor field satisfy reduction condition i
Fpin, Ul =3 . ir[ngU. U
— OQutside the box U =1 (V=1) Rl U1 = 2 trl =Mzt 0
n,=n, (n,. out side of box 1s parallel to boundary value n ) to satisfy decomposition
condition nV=Vn’
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Two-meron

(z— :LIII)V

_|_

(x—zx

1)’ }

Phys.Rev.D78:065033,2008.

Analytical solution

*To make action finite, we use the
smeared solution with the instanton cap
of size R.

*Using conformal transformation, two-
meron configuration can be transform to
the concentric circle.

*Then reduction is condition can be
solved analytically using spherical
surface harmonics.

* The monopole current is given by line
passing through center.

*This solution is corresponding circle
passing through region II.
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Monopoles from two-meron

P(-1,-1,-1,5.708) M
P(-1, -1 12-7.708)
T U2/42 iy /62 =1 Toplogical density
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The plot of a magnetic-monopole loop generated by a pair of (smeared) merons in 4-dimensional
Euclidean space where, the gap of the energy between region II and I/III smoothed by using sooling
method. The 3-dimensinal plot 1s obtained by projecting the 4-dimensional dual lattice space to the 3-
dimensional one, 1.e., (x; y; z; t) — (v; z; t). The positions of two meron sources are described by solid
boxes, and the monopole loop by red solid line. In the lattice of the volume [-10, 10]3 X [-16, 16] with
a lattice spacing 2 = 1, the two-merons are located at (-1; -1;-1; -1*6:078), and are smeared with the
instanton cap of size R =3:0 (d = 12, R1 =2:833 and R2 = 50:833). The monopole loop is confined in
the 3-dim. space x = -1 and in a 2-dim. plane rotated about t-axis

by 0.46rad. (For guiding the eye, the monopole loop is fitted by an ellipsoid curve (blue dotted line)
with the long radius 6 and the short radius 4.)
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Two instanton

Two types of solution is known,

Al (z) =nl,0,log¢(x)

* "t Hooft type ¢(z) =1+ >._, -

(:E—.’Ek)z

« JNR type $(z) =3 7_o CErTsr

It is hard to solve the reduction condition analytically

=2 We apply our numerical method.

There are several works using mulit-instanton configurations.

However, these configurations can not always satisfy the Yang-Mills equation.
Here, we use the solutions of YM equation,

and investigate weather magnetic monopoles appear.

=2 We shows example where magnetic monopole loops appear
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Two-instanaton JNR type

The 3-dimensional projection, (X,y,z,t) = (y,z,t), of a magnetic-monopole loop generated by
two-instanton of JNR type in 4-dimensional lattice $[-15,15]"2 ¥times [-30,30]$ with its
spacing $¥epsilon=18%. the magnetic monopole is wriiten by a red solid curve and two-
instanton solution is parametrized by the "size" and the "position" denoted by solid boxes; a =
4 at(0,0,0,10.851),a=4at(0,0,-13.-10.9),a=4at (0, 0, 12, -10.9).
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Two-instanton( ‘t Hooft type)

a=4at(0,0,-3,00 W
a=4at(0,0, 2, 0)

5T 0 _SHENS I

The monopole loop from two-instanton ('t Hooft type), which is projected into 3-
dimensional dual lattice space, i.e. (x,y,z,)=> (y,z,t). The monopole loop is plotted by red
curves, and positions of the instanton source are by boxes. The two-instanton is
parametrized asa=4 at (0, 0,-3. 0) a=4 at (0, 0, 2 0), and placed in [-12,12]*2 ¥times [-
20,2012 lattice with its spacing ¥epslon = 1.



Calorons

e Finite temperature: Matsubara formalism
finite size and periodic boundary for temporal direction
[“dtfax - [ dtfdx

 YM equation for instanton should be modified to have
Periodic boundary condition

e =»Caloron AB(z) =nB,d,logp(x)
~ 1 - ot sinh(r) 't Hooft t — 27N /
o =1+ Z 2r cosh(ry) — cos(zk) (t Hooft type) r= 2zNx —xul/p

r = 27N(t - t)/B

N, .
_ Pi sinh(ry)
¢ = Z 2r cosh(ry) — cos(zy) (INR type)
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Application to lattice data

e Detecting which type of topological configurations exist in the lattice data
involving magnetic-monopole loops generated by Monte Carlo simulation.

=» Detecting the magnetic monopole loops and discriminating each closed
loop from clusters of magnetic-monopole current

=» Evaluating contrition of monopole loops to Wilson loops
— Linking numbers of Wilson loop and monopole loop

——————

=» Evaluating topological index (density) in lattice data. \‘(’J

=» Comparing with known topological configurations of Yang-Mills theory and
lattice data in terms of magnetic monopole charge density and topological
index density.



Discriminating each monopole loop from lattice data

Discriminating each closed loop from clusters
of magnetic-monopole clusters.

— huge number of non-zero current :
— Need of computational algorithm

Applying “computational homology” (chomp
software) based on an algebraic topology
algorithm .

— monopole currents can be represented by
edge of graph in 4D-space (4D-torus)

— By using chomp one can compute Betti
number and generators, very fast.

=» Monopole loops are distinguished by
generators of 1-dimensional Betti
number.
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mopole charge

Betti number means,

Bo : the number of connected graph

B1 : the number of holes (loops)
HIGDEFREZTDIGHA

Distribution of monopole
charges for 24 lattice
(B:2.4, Wilson standard

AL DvlRiiNERiE

action)

About 3% current link
variables have non-zero
vales.




count

measurement of monopoles loops

Invetigate monopoles which contribute to Wilson loops

— Monopole charge density

— What kind of monopole loops are realized, check winding monopoles.

— Distribution of monopole loops/clusters and their size
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*Number of monopoles currents
(blue) for each configuration
*The number of clusters (red)
*The number of loops(green)
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Examples of long monopole loops

#427 ——
s #428

Monopole loops are plotted in 3-
dimensional space (2423 lattice with
periodic boundary condition) by
projection from 4D space (x,y,z,t) to3DT
space (x,y,t) .

250



number of cluseter

Monopole loops & clusters

preliminary

Cluster size v.s. Counts Loop length v.s. counts
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