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Study for the non-Abelian gauge theory

Topics in nonequilibrium gluodynamics
• Early thermalization for Partons

2-3fm/c (Perturbative 
Analysis<0.6-1fm/c (Exp.)

gg→gg, gg→gggHydrodynamics

Purpose of this talkPurpose of this talk

Yang Mills equation‘Soft’: field

Vlasov-Boltzmann equation‘Hard’ :parton

However

Dense system (Boltzmann eq. should 
not be applied)

No consideration of particle number 
changing process   g→gg, g→ggg 

(Off-shell effect) 



Time Contour

Schwinger-Dyson equationSchwinger-Dyson equation

in terms of statistical (distribution) and spectral functions
Kadanoff-Baym equationKadanoff-Baym equation

For a free field

Breit-Wigner typeBoson

in Closed-Time Path formalism
2. Kadanoff-Baym eqn

2 Particle-Irreducible Effective Action Γ2 Particle-Irreducible Effective Action Γ

Mean field is omitted.



Merit
• Spectral function

Time evolution of spectral function +   
distribution function

• Off-shell effect
We can trace partons which are unstable by its particle number 
changing process in addition to collision effects. we can extract 
gg→g (2 to 1) and ggg→g (3 to 1) and the inverse prohibited 
kinematically in Boltzmann simulation. This process might 
contribute the early thermalization.

(Why do we use KB eq, not Boltzmann eq?)

Σ=Self-energies Memory integral

The Kadanoff-Baym equation:
Time evolution of statistical (distribution) and spectral function 



• O(N) theory with no condensate <φa>=0
• Homogeneous in space 
• 1+1 dimensions 
• Next Leading Order in 1/N expansion
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• φ4 theory with no condensate <φ>=0
• Homogeneous in space 
• 1+1 dimensions 
• Next Leading Order of coupling 

O(λ2) LO

NLO

Application for BEC, Cosmology (or reheating) and DCC dynamics?

+・・・

+・・・



Entropy in Rel. Kadanoff-Baym equation
• Nonrel. case: Ivanov, Knoll and Voskresenski (2000), Kita (2006)
• The first order gradient expansion of the Schwinger-Dyson equation.

For NLO λ2 (Φ4)

In the quasiparticle limit We reproduce the entropy for the boson.

[ ]  Entropy flow spectral function

H-theorem needs not to be based on the quasiparticle picture.

For NLO of 1/N (O(N))



Sketch of H-theorem (O(N))
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~λ2

×(x-y)log(x/y) ≧ 0

O(N)O(N)

+・・・ =

=

+

+

+

+ +

1/N

1/N

1/N 1/N 1/N

1/N

× (x-y)log(x/y) ≧ 0×

Coupling 
expansion

1/N expansion

=

Self-energy



Evolution of kinetic entropy (Φ4)
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No thermalization for the Boltzmann eq.

Off-shell
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Non-Abelian Gauge Theory
• Controlled gauge dependence of effective 

action (Smit and Arrizabaraga (2002), Carrington et al (2005) )

Truncated effective actionTruncated effective action

Gauge invariant Green’s function

ExactExact

Expansion of coupling of self energy

Self-energy

Under gauge transformationUnder gauge transformation

⇔ Schwinger-Dyson equation

at ⇔

Stationary point

Higher order gauge dependence
⇒ Energy, Pressure and Entropy derived from δΓ/δT has controlled gauge 
dependence. Gauge invariance is reliable in the truncated order.

⇒ Gauge invariant Energy, Pressure and Entropy derived from δΓ/δT
This might not the entropy in the previous page.

Nielsen (1975)



4. Summary and Remaining Problems
• We have introduced the kinetic entropy based on the 

Kadanoff-Baym equation.
• The kinetic entropy satisfies H-theorem for NLO of 

λ(Φ4) and 1/N (O(N)).
• S(OS)/S(QP) is nearly constant, but S(QP) tends to be 

affected by the total number density.
• Gauge dependence is controlled in deriving 

thermodynamic variables (energy, pressure and 
entropy and so on).

• Longer time simulation in the O(N) case
• Thermal solution for the SD eq. for the LO of g2 for the gauge theory (2+1 

dimensions)
• H-theorem for the gauge theory, gauge invariance of the entropy



Proof of H-theorem (O(N))
Φ4Φ4
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Time irreversibility

Exact 2PI (no 
truncation)

Truncation

LO of 
Gradient 
expansion
H-theorem

λΦ4 O(N) SU(N)

NLO of λ NLO of 1/N LO of g2

Symmetric phase 〈Φ〉=0

× × ×

△ △ ?
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Time evolution of number density



For quasiparticle approximation

0⇔4

1⇔3

2⇔2

3⇔1



Microscopic processes



Spectral function



Coupling dependence



Self-energy

Schwinger-Dyson eqn

For perturbative Green’s functions

Imaginary part

contributes to the particle number changing process g⇔gg



O(N): 1/N expansion

LO  O(N)

NLO  
O(1)
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