Thermalization of scalar and gauge theory with off－shell entropy

Akihiro Nishiyama
University of Tokyo
Institute of Physics

基研研究会「熱場の量子論とその応用」2009年9月4日

Background

RHIC experiments

CGC $\quad \tau<0 \mathrm{fm} / \mathrm{c}$

$$
\sqrt{\mathrm{S}_{\mathrm{NN}}=130,200 \mathrm{GeV}} \begin{array}{ll}
0<\tau<0.6 \sim \\
1.0 f m
\end{array} \mathrm{c}
$$

Glasma

Figures from P. SORENSEN
$\tau \sim 10 \mathrm{fm} / \mathrm{c}$ Kinetic freezeout

Topics in nonequilibrium gluodynamics

- Early thermalization for Partons

2. Kadanoff-Baym eqn

in Closed-Time Path formalism

Kadanoff-Baym equation

in terms of statistical (distribution) and spectral functions

$$
F(x, y)=\frac{1}{2}\langle\{\tilde{\phi}(x), \tilde{\phi}(y)\}\rangle
$$

For a free field

$$
\rho(x, y)=\langle[\tilde{\phi}(x), \tilde{\phi}(y)]\rangle
$$

$$
\gamma \rightarrow 0
$$

$$
\begin{aligned}
& \text { For a tree tield } \\
& \qquad F\left(p^{0}, p\right)=2 \pi \delta\left(p^{2}-m^{2}\right)\left(1+\frac{1}{\frac{e^{\beta\left|p^{0}\right|}-1}{\text { Boson }}}\right) \quad \rho\left(p^{0}, p\right)=\frac{\gamma}{\left(p^{0}-\omega\right)^{2}+\gamma^{2} / 4} \rightarrow 2 i \pi \epsilon\left(p^{0}\right) \delta\left(p^{2}-m^{2}\right) \\
& \text { Breit-Wigner type }
\end{aligned}
$$

The Kadanoff-Baym equation:

Time evolution of statistical (distribution) and spectral function

$$
\begin{aligned}
& \quad\left(-G_{0}^{-1}+\Sigma_{\delta}\right) F\left(x_{0}, y_{0}, \mathbf{p}\right)=\int_{0}^{y_{0}} d z_{0} \Sigma_{F} \rho-\int_{0}^{x_{0}} d z_{0} \Sigma_{\rho} F \\
& \quad\left(-G_{0}^{-1}+\Sigma_{\delta}\right) \rho\left(x_{0}, y_{0}, \mathbf{p}\right)=-\int_{y_{0}}^{x_{0}} d z_{0} \Sigma_{\rho} \rho \\
& G_{0}^{-1}=-\partial^{2}-m^{2} \quad \Sigma=\text { Self-energies }
\end{aligned}
$$

Merit (Why do we use KB eq, not Boltzmann eq?)

- Spectral function

Time evolution of spectral function distribution function

- Off-shell effect

We can trace partons which are unstable by its particle number changing process in addition to collision effects. we can extract
$\mathrm{gg} \rightarrow \mathrm{g}(2$ to 1$)$ and $\mathrm{ggg} \rightarrow \mathrm{g}(3$ to 1$)$ and the inverse prohibited kinematically in Boltzmann simulation. This process might contribute the early thermalization.

Scalar theory as a toy model

Application for BEC, Cosmology (or reheating) and DCC dynamics?

- ϕ^{4} theory with no condensate $\langle\phi\rangle=0$
- Homogeneous in space
- 1+1 dimensions
- Next Leading Order of coupling
- $\mathbf{O}(\mathrm{N})$ theory with no condensate $<\phi_{\mathrm{a}}>=0$
- Homogeneous in space $><>0<>0<$
- 1+1 dimensions
- Next Leading Order in $1 / \mathrm{N}$ expansion

Entropy in Rel. Kadanoff-Baym equation

- Nonrel. case: Ivanov, Knoll and Voskresenski (2000), Kita (2006)
- The first order gradient expansion of the Schwinger-Dyson equation.
[] Entropy flow spectral function

$$
\begin{aligned}
& s^{\mu}=\int \frac{d^{d+1} p}{(2 \pi)^{d+1}}\left[\frac{\rho}{i}\left(p^{\mu}-\frac{1}{2} \frac{\partial \operatorname{Re} \Sigma_{R}}{\partial p_{\mu}}\right)+\frac{\Sigma_{\rho}}{i} \frac{1}{2} \frac{\partial \operatorname{Re} G_{R}}{\partial p_{\mu}}\right] \sigma \\
& \sigma=-f \ln f+(1+f) \ln (1+f) \\
& \partial_{\mu} s^{\mu}(X)=\int \frac{d^{d+1} p}{(2 \pi)^{d+1}} \frac{1}{2} \ln \frac{G^{12}}{G^{21}} C \geq 0 \quad \text { For NLO } \lambda^{2}\left(\Phi^{4}\right) \\
& \text { For NLO of } 1 / \mathbf{N}(\mathbf{O}(\mathbf{N}))
\end{aligned}
$$

H-theorem needs not to be based on the quasiparticle picture.
In the quasiparticle limit We reproduce the entropy for the boson.

$$
s^{0} \rightarrow s^{0}=\int \frac{d^{d} p}{(2 \pi)^{d}}\left[-n_{\mathbf{p}} \ln n_{\mathbf{p}}+\left(1+n_{\mathbf{p}}\right) \ln \left(1+n_{\mathbf{p}}\right)\right]
$$

Sketch of H-theorem (O(N))

| $\boldsymbol{Q 4}^{4}$
Coupling
expansion

$$
\begin{array}{r}
\text { Self-energy } \\
\partial_{\mu} s^{\mu}(X)=\lambda^{2} \\
\lambda^{2} \times(\mathrm{x}-\mathrm{y}) \log (\mathrm{x} / \mathrm{y}) \geqq 0
\end{array}
$$

$\mathrm{O}(\mathrm{N})$
1/N expansion
$-\frac{\lambda}{4!N}\left(\hat{\phi}_{a} \hat{\phi}_{a}\right)^{2}$

$\left.\lambda_{\text {eff }}=\frac{\lambda}{1-1 / \mathrm{N}\rangle><}=\right\}=>+><+\gg<$

$$
\partial_{\mu} s^{\mu}(X)=\lambda \times \lambda_{\mathrm{eff}} \times(\mathrm{x}-\mathrm{y}) \log (\mathrm{x} / \mathrm{y}) \geqq 0
$$

Evolution of kinetic entropy (Φ^{4})

Evolution of kinetic entropy (O(N))

Non-Abelian Gauge Theory

- Controlled gauge dependence of effective action
(Smit and Arrizabaraga (2002), Carrington et al (2005))
$\underset{\text { Gauge invariant }}{\text { Nielsen (1975) }}$ Exact $\Gamma_{2 \text { 2 }} \quad \frac{\delta \Gamma}{\delta D}=\underset{\text { Green's function }}{0} D^{-1}(x, y)=D_{0}^{-1}(x, y)-\Pi(x, y)$
$\Gamma_{2 \text { PI }} \Rightarrow$ Gauge invariant Energy, Pressure and Entropy derived from $\delta \Gamma / \delta \mathrm{T}$

Truncated effective action

 This might not the entropy in the previous page.$\Gamma_{2 \mathrm{PI}}=\Gamma_{L}+\Gamma_{\mathrm{ex}} \quad \Gamma_{L} \sim O\left(g^{2 L-2}\right) / \Gamma_{\mathrm{ex}}=O\left(g^{2 L}\right)$
Expansion of coupling of self energy
Stationary point

$$
\frac{\delta \Gamma_{L}}{\delta D}=0
$$

 \Leftrightarrow Schwinger-Dyson equation
Under gauge transformation $\delta \Gamma_{L} \sim g^{2} \Gamma_{L}$ Higher order gauge dependence
$\Gamma_{L} \Rightarrow$ Energy, Pressure and Entropy derived from $\delta \Gamma I \delta \mathrm{~T}$ has controlled gauge dependence. Gauge invariance is reliable in the truncated order.

4. Summary and Remaining Problems

- We have introduced the kinetic entropy based on the Kadanoff-Baym equation.
- The kinetic entropy satisfies H-theorem for NLO of $\lambda\left(\Phi^{4}\right)$ and $1 / \mathrm{N}(\mathrm{O}(\mathrm{N})$).
- $S(O S) / S(Q P)$ is nearly constant, but $S(Q P)$ tends to be affected by the total number density.
- Gauge dependence is controlled in deriving thermodynamic variables (energy, pressure and entropy and so on).
- Longer time simulation in the $\mathbf{O}(\mathrm{N})$ case
- Thermal solution for the SD eq. for the LO of $\mathbf{g}^{\mathbf{2}}$ for the gauge theory (2+1 dimensions)
- H-theorem for the gauge theory, gauge invariance of the entropy

Proof of H-theorem ($\mathrm{O}(\mathrm{N})$)

Coupling
expansion

$$
-\frac{\lambda}{4!N}\left(\hat{\phi}_{a} \hat{\phi}_{a}\right)^{2}{ }_{+}
$$

$\mathrm{O}(\mathrm{N})$
1/N expansion

$$
0
$$

$$
1 / \mathrm{N}
$$

1/N

$$
\partial_{\mu} s^{\mu}(X)=\lambda^{2} \times(\mathrm{x}-\mathrm{y}) \log (\mathrm{x} / \mathrm{y}) \geqq 0
$$

Time irreversibility

Symmetric phase $\langle\Phi\rangle=0$

	$\lambda \Phi^{4}$	$O(N)$	$\mathbf{S U}(\mathbf{N})$
Exact 2PI (no truncation)	X	X	X
Truncation	NLO of λ $0-\mathrm{O}$	NLO of $1 / \mathrm{N}$ \qquad -	$\text { LO of } \mathrm{g}^{2}$ 0 ?
LO of Gradient expansion H-theorem	0	0	$?$

Time evolution of number density

For quasiparticle approximation

$$
\begin{aligned}
& \partial_{t} n_{\mathbf{p}}(t)= \frac{\lambda^{2}}{3} \int \frac{d^{d} \mathbf{q}}{(2 \pi)^{d}} \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \int_{t_{0}}^{t} d t^{\prime} \frac{1}{2 \tilde{\omega}(\mathbf{p}) 2 \tilde{\omega}(\mathbf{q}) 2 \tilde{\omega}(\mathbf{k}) 2 \tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q})} \\
&\left\{\left[\left(1+n_{\mathbf{p}}\right)\left(1+n_{\mathbf{q}}\right)\left(1+n_{\mathbf{k}}\right)\left(1+n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}\right)-n_{\mathbf{p}} n_{\mathbf{q}} n_{\mathbf{k}} n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}\left(t^{\prime}\right)\right]\right. \\
& \times \cos \left[(\tilde{\omega}(\mathbf{p})+\tilde{\omega}(\mathbf{q})+\tilde{\omega}(\mathbf{k})+\tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q}))\left(t-t^{\prime}\right)\right] \\
&+3\left[\left(1+n_{\mathbf{p}}\right)\left(1+n_{\mathbf{q}}\right)\left(1+n_{\mathbf{k}}\right) n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}-n_{\mathbf{p}} n_{\mathbf{q}} n_{\mathbf{k}}\left(1+n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}\right)\left(t^{\prime}\right)\right] \\
& \times \cos \left[(\tilde{\omega}(\mathbf{p})+\tilde{\omega}(\mathbf{q})+\tilde{\omega}(\mathbf{k})-\tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q}))\left(t-t^{\prime}\right)\right] \\
&+3\left[\left(1+n_{\mathbf{p}}\right)\left(1+n_{\mathbf{q}}\right) n_{\mathbf{k}} n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}-n_{\mathbf{p}} n_{\mathbf{q}}\left(1+n_{\mathbf{k}}\right)\left(1+n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}\right)\left(t^{\prime}\right)\right] \\
& \times \cos \left[(\tilde{\omega}(\mathbf{p})+\tilde{\omega}(\mathbf{q})-\tilde{\omega}(\mathbf{k})-\tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q}))\left(t-t^{\prime}\right)\right] \\
&+\left[\left(1+n_{\mathbf{p}}\right) n_{\mathbf{q}} n_{\mathbf{k}} n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}-n_{\mathbf{p}}\left(1+n_{\mathbf{q}}\right)\left(1+n_{\mathbf{k}}\right)\left(1+n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}\right)\left(t^{\prime}\right)\right] \\
& \times\left.\cos \left[(\tilde{\omega}(\mathbf{p})-\tilde{\omega}(\mathbf{q})-\tilde{\omega}(\mathbf{k})-\tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q}))\left(t-t^{\prime}\right)\right]\right\} . \\
& 3 \Leftrightarrow 1
\end{aligned}
$$

Microscopic processes

Spectral function

Coupling dependence

λ	γ_{0}	$s_{\text {max }}$	A	γ	γ_{0}	$s_{\text {max }}$	A	γ	$100 \leq m X^{0} \leq 150$
4(OS)	-	2.93	0.16	0.0071	-	2.93	0.15	0.0071	
4	0.24	2.54	0.16	0.030	0.14	2.54	0.14	0.030	
2	0.084	2.48	0.10	0.0031	0.036	2.44	0.13	0.0031	$300 \leq m X^{0} \leq 600$
1	0.027	2.39	0.17	0.0024	0.0085	2.39	0.19	0.0011	$600 \leq m X^{0} \leq 900$

Self-energy

Schwinger-Dyson eqn

$$
D^{-1}(x, y)=D_{0}^{-1}(x, y)-\Pi(x, y)
$$

For perturbative Green's functions

Imaginary part

$$
\operatorname{Im} \Pi_{\mu v}(\omega, \mathbf{p})=-\pi m_{\mathrm{D}}^{2} \omega \int \frac{\mathrm{~d} \Omega}{4 \pi} v_{\mu} v_{v} \delta(\omega-\mathbf{v} \cdot \mathbf{p})
$$

contributes to the particle number changing process $\mathbf{g} \Leftrightarrow \mathrm{g} g$

$\mathrm{O}(\mathrm{N}): 1 / \mathrm{N}$ expansion

$\mathrm{O}(\mathrm{N})$: spectral function

