Thermalization of scalar and gauge theory with off-shell entropy

Akihiro Nishiyama University of Tokyo Institute of Physics

基研研究会「熱場の量子論とその応用」 2009年9月4日

Topics in nonequilibrium gluodynamics

Early thermalization for Partons

	<u>0.6-1fm/c</u> (Exp.)	<	2-3fm/c (A1	Perturbative nalysis		
	Hydrodynamics		gg→gg, g	lg→ggg		
'Soft': field	Vang Mills equation			However		
	Tang mins equation			Dense system (Boltzman	ın eq. should	
'Hard' :parton	Vlasov-Boltzmann e	-Boltzmann equation		not be applie	d)	
				No consideration of par	ticle number	
				changing process g→	≻gg, g→ggg	
Dumpage of this tall				(Off-shell effe	ect)	

Purpose of this talk

Introduction for the kinetic entropy based on Kadanoff-Baym equation

Proof for the H-theorem for scalar O(N) Φ^4 theory.

Study for the non-Abelian gauge theory

2. Kadanoff-Baym eqn

in Closed-Time Path formalism

Kadanoff-Baym equation

in terms of statistical (distribution) and spectral functions

$$F(x,y) = \frac{1}{2} \left\langle \left\{ \tilde{\phi}(x), \tilde{\phi}(y) \right\} \right\rangle$$

For a free field
$$F(p^{0},p) = 2\pi\delta(p^{2} - m^{2}) \left(1 + \frac{1}{\frac{e^{\beta|p^{0}|} - 1}{Boson}} \right)$$
$$\rho(x,y) = \left\langle \left[\tilde{\phi}(x), \tilde{\phi}(y) \right] \right\rangle$$
$$\rho(p^{0},p) = \frac{\gamma}{(p^{0} - \omega)^{2} + \gamma^{2}/4} \rightarrow 2i\pi\epsilon(p^{0})\delta(p^{2} - m^{2})$$

Breit-Wigner type

The Kadanoff-Baym equation:

Time evolution of statistical (distribution) and spectral function

 $(-G_0^{-1} + \Sigma_{\delta})F(x_0, y_0, \mathbf{p}) = \int_0^{y_0} dz_0 \Sigma_F \rho - \int_0^{x_0} dz_0 \Sigma_{\rho} F$ $(-G_0^{-1} + \Sigma_{\delta})\rho(x_0, y_0, \mathbf{p}) = -\int_{y_0}^{x_0} dz_0 \Sigma_{\rho} \rho$

 $G_0^{-1} = -\partial^2 - m^2$ Σ =Self-energies

Memory integral

Merit (Why do we use KB eq, not Boltzmann eq?)

- Spectral function
 Time evolution of spectral function distribution function
- Off-shell effect

 (p^0, p)

We can trace partons which are unstable by its particle number changing process in addition to collision effects. we can extract

 $gg \rightarrow g$ (2 to 1) and $ggg \rightarrow g$ (3 to 1) and the inverse prohibited kinematically in Boltzmann simulation. This process might contribute the early thermalization.

Scalar theory as a toy model

Application for BEC, Cosmology (or reheating) and DCC dynamics?

NLO

O(λ^2)

- ϕ^4 theory with no condensate $\langle \phi \rangle = 0$
- Homogeneous in space
- 1+1 dimensions
- Next Leading Order of coupling
- O(N) theory with no condensate $\langle \phi_a \rangle = 0$
- Homogeneous in space
- 1+1 dimensions $p \rightarrow p$
- Next Leading Order in 1/N expansion

Entropy in Rel. Kadanoff-Baym equation

- Nonrel. case: Ivanov, Knoll and Voskresenski (2000), Kita (2006)
- The first order gradient expansion of the Schwinger-Dyson equation.

[] Entropy flow spectral function

$$s^{\mu} = \int \frac{d^{d+1}p}{(2\pi)^{d+1}} \left[\frac{\rho}{i} \left(p^{\mu} - \frac{1}{2} \frac{\partial \operatorname{Re}\Sigma_R}{\partial p_{\mu}} \right) + \frac{\Sigma_{\rho}}{i} \frac{1}{2} \frac{\partial \operatorname{Re}G_R}{\partial p_{\mu}} \right] \sigma$$

$$\frac{\sigma = -f \ln f + (1+f) \ln(1+f)}{\partial_{\mu} s^{\mu}(X)} = \int \frac{d^{d+1}p}{(2\pi)^{d+1}} \frac{1}{2} \ln \frac{G^{12}}{G^{21}} C \ge 0$$
For NLO $\lambda^2 (\Phi^4)$
For NLO of 1/N (O(N))

H-theorem needs not to be based on the quasiparticle picture.

In the quasiparticle limit We reproduce the entropy for the boson.

$$s^{0} \rightarrow s^{0} = \int \frac{d^{d}p}{(2\pi)^{d}} \left[-n_{\mathbf{p}} \ln n_{\mathbf{p}} + (1+n_{\mathbf{p}}) \ln(1+n_{\mathbf{p}}) \right]$$

Sketch of H-theorem (O(N))

Evolution of kinetic entropy (O(N))

Non-Abelian Gauge Theory

 Controlled gauge dependence of effective action (Smit and Arrizabaraga (2002), Carrington et al (2005)) CL1

Exact
$$\Gamma_{2}$$
PI at
Gauge invariant $\frac{\delta \Gamma}{\delta D} = 0 \Leftrightarrow D^{-1}(x,y) = D_0^{-1}(x,y) - \Pi(x,y)$
Green's function $D_0^{-1}(x,y) - \Pi(x,y) = D_0^{-1}(x,y) - \Pi(x,y)$
Self-energy

 $\Gamma_{2PI} \Rightarrow$ Gauge invariant Energy, Pressure and Entropy derived from $\delta \Gamma / \delta T$

This might not the entropy in the previous page.

Truncated effective action

$$\Gamma_{2\mathrm{PI}} = \Gamma_L + \Gamma_{\mathrm{ex}}$$

 $\begin{array}{c|c} \Gamma_L \sim O(g^{2L-2}) \\ & \bigcirc \end{array} \end{array}$ Expansion of coupling of self energy

Stationary point

 $\Gamma_{\rm ex} = O(g^{2L})$

 $\delta \Gamma_L \sim g^2 \Gamma_L$ Higher order gauge dependence Under gauge transformation $\Gamma_L \Rightarrow$ Energy, Pressure and Entropy derived from $\delta \Gamma / \delta T$ has controlled gauge dependence. Gauge invariance is reliable in the truncated order.

4. Summary and Remaining Problems

- We have introduced the kinetic entropy based on the Kadanoff-Baym equation.
- The kinetic entropy satisfies H-theorem for NLO of λ (Φ^4) and 1/N (O(N)).
- S(OS)/S(QP) is nearly constant, but S(QP) tends to be affected by the total number density.
- Gauge dependence is controlled in deriving thermodynamic variables (energy, pressure and entropy and so on).
- Longer time simulation in the O(N) case
- Thermal solution for the SD eq. for the LO of g² for the gauge theory (2+1 dimensions)
- H-theorem for the gauge theory, gauge invariance of the entropy

Time irreversibility

Symmetric phase $\langle \Phi \rangle = 0$

	λΦ4	O(N)	SU(N)
Exact 2PI (no truncation)	×	×	×
Truncation	NLO of λ	NLO of 1/N	LO of g ²
LO of Gradient expansion H-theorem	Ο	0	?

Time evolution of number density

For quasiparticle approximation

$$\begin{array}{lll} \partial_t n_{\mathbf{p}}(t) &=& \frac{\lambda^2}{3} \int \frac{d^d \mathbf{q}}{(2\pi)^d} \frac{d^d \mathbf{k}}{(2\pi)^d} \int_{t_0}^t dt' \frac{1}{2\tilde{\omega}(\mathbf{p})2\tilde{\omega}(\mathbf{q})2\tilde{\omega}(\mathbf{k})2\tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q})} \\ && \left\{ \begin{bmatrix} (1+n_{\mathbf{p}})(1+n_{\mathbf{q}})(1+n_{\mathbf{k}})(1+n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}) - n_{\mathbf{p}}n_{\mathbf{q}}n_{\mathbf{k}}n_{\mathbf{p}-\mathbf{k}-\mathbf{q}}(t') \end{bmatrix} \right. \\ &\times && \cos\left[(\tilde{\omega}(\mathbf{p}) + \tilde{\omega}(\mathbf{q}) + \tilde{\omega}(\mathbf{k}) + \tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q}))(t-t') \right] & \mathbf{0} \Leftrightarrow \mathbf{4} \\ && + 3\left[(1+n_{\mathbf{p}})(1+n_{\mathbf{q}})(1+n_{\mathbf{k}})n_{\mathbf{p}-\mathbf{k}-\mathbf{q}} - n_{\mathbf{p}}n_{\mathbf{q}}n_{\mathbf{k}}(1+n_{\mathbf{p}-\mathbf{k}-\mathbf{q}})(t') \right] \\ &\times && \cos\left[(\tilde{\omega}(\mathbf{p}) + \tilde{\omega}(\mathbf{q}) + \tilde{\omega}(\mathbf{k}) - \tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q}))(t-t') \right] & \mathbf{1} \Leftrightarrow \mathbf{3} \\ && + 3\left[(1+n_{\mathbf{p}})(1+n_{\mathbf{q}})n_{\mathbf{k}}n_{\mathbf{p}-\mathbf{k}-\mathbf{q}} - n_{\mathbf{p}}n_{\mathbf{q}}(1+n_{\mathbf{k}})(1+n_{\mathbf{p}-\mathbf{k}-\mathbf{q}})(t') \right] \\ &\times && \cos\left[(\tilde{\omega}(\mathbf{p}) + \tilde{\omega}(\mathbf{q}) - \tilde{\omega}(\mathbf{k}) - \tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q}))(t-t') \right] & \mathbf{2} \Leftrightarrow \mathbf{2} \\ && + \left[(1+n_{\mathbf{p}})n_{\mathbf{q}}n_{\mathbf{k}}n_{\mathbf{p}-\mathbf{k}-\mathbf{q}} - n_{\mathbf{p}}(1+n_{\mathbf{q}})(1+n_{\mathbf{k}})(1+n_{\mathbf{p}-\mathbf{k}-\mathbf{q}})(t') \right] \\ &\times && \cos\left[(\tilde{\omega}(\mathbf{p}) - \tilde{\omega}(\mathbf{q}) - \tilde{\omega}(\mathbf{k}) - \tilde{\omega}(\mathbf{p}-\mathbf{k}-\mathbf{q}))(t-t') \right] & \mathbf{3} \Leftrightarrow \mathbf{1} \end{array}$$

Microscopic processes

Spectral function

Coupling dependence

λ	γ_0	s_{\max}	A	γ	γ_0	s_{\max}	A	γ	
4(OS)	-	2.93	0.16	0.0071	-	2.93	0.15	0.0071	
4	0.24	2.54	0.16	0.030	0.14	2.54	0.14	0.030	$100 \le mX^0 \le 150$
2	0.084	2.48	0.10	0.0031	0.036	2.44	0.13	0.0031	$300 \le mX^{0} \le 600$
1	0.027	2.39	0.17	0.0024	0.0085	2.39	0.19	0.0011	$600 \le mX^0 \le 900$

Self-energy

Schwinger-Dyson eqn $D^{-1}(x,y) = D_0^{-1}(x,y) - \Pi(x,y)$

For perturbative Green's functions

Imaginary part
$$\operatorname{Im}\Pi_{\mu\nu}(\omega,\mathbf{p}) = -\pi m_{\mathrm{D}}^{2}\omega \int \frac{\mathrm{d}\Omega}{4\pi} v_{\mu}v_{\nu}\delta(\omega-\mathbf{v}\cdot\mathbf{p})$$

contributes to the particle number changing process g⇔gg

O(N): 1/N expansion

O(N): spectral function

