Roberge-Weiss transition and Dashen mechanism

Saga Univ. H. Kouno Kyushu Univ. Y. Sakai, K. Kashiwa, M. Yahiro 2009年9月5日研究会「熱場の量子論とその応用」

Imaginary chemical potential

- There is a sign Problem at real μ .
- Extrapolation from results at imaginary μ to results at real μ .
- Determine the parameters of effective model at imaginary $\mu = i \theta T$.
- Study the properties of deconfinement!!

Deconfinement transition

- There is no exact symmetry at real μ .
- The dominance of Chiral transition at real μ . \Rightarrow Success of NJL model
- There is an exact symmetry at imaginary μ . Extended Z₃ symmetry
- There is a phase transition at imaginary μ . Roberge-Weiss (RW) transition = C violation Nucl. Phys. B275 (1986) 734.

Phase diagram

PNJL model

多項式近似による外挿

Roberg-Wess periodicity and transition

 $\Omega(\theta) = \Omega(\theta + 2\pi k/3) = \Omega(-\theta).$

Kratochvila, Forcrand PRD73,114512(2006)

Polyakov Loop

 $\theta/(\pi/3)$

PNJL model

- K. Fukushima, Phys. Lett. B591, 277(2004)
 Polyakov loop+NJL
- Chiral symmetry extended Z₃symmetry

H. K., Y. Sakai, K. Kashiwa, M. Yahiro, arXiv:0904.0925(hep-ph), to be published in J. Phys. G

RW periodicity and extended Z_3 symmetry (EZ₃)

 $\theta = \mu_I / T$

$$\Omega = -2N_f \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \Big[3E(\mathbf{p}) + \frac{1}{\beta} \ln \left[1 + 3(\Phi + \Phi^* e^{-\beta E^-(\mathbf{p})}) e^{-\beta E^-(\mathbf{p})} + e^{-3\beta E^-(\mathbf{p})} \right] \\ + \frac{1}{\beta} \ln \left[1 + 3(\Phi^* + \Phi e^{-\beta E^+(\mathbf{p})}) e^{-\beta E^+(\mathbf{p})} + e^{-3\beta E^+(\mathbf{p})} \right] \Big] + U_M + \mathcal{U}$$

 $E(\mathbf{p}) = \sqrt{\mathbf{p}^2 + M^2}, \ \sigma = \langle \bar{q}q \rangle, \qquad \Sigma_{\mathrm{s}} = -2G_{\mathrm{s}}\sigma, \qquad U_{\mathrm{M}} = G_{\mathrm{s}}\sigma^2, \ M = m_0 + \Sigma_{\mathrm{s}}.$

extended Z₃ trans. $\theta \to \theta + 2\pi k/3, \ \Phi(\theta) \to \Phi(\theta) e^{-i2\pi k/3} \quad \theta = \mu_I/T$ 修正版Polyakovループ $\Psi \equiv e^{i\theta}\Phi$ $\theta \to \theta + 2\pi k/3, \ \Psi(\theta) \to \Psi(\theta), \ \Psi(\theta)^* \to \Psi(\theta)^*$

Thermodynamic potential

 $\theta = \mu_I / T$

$$\Omega = -2N_f \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \Big[3E(\mathbf{p}) + \frac{1}{\beta} \ln \left[1 + 3\Psi e^{-\beta E(\mathbf{p})} + 3\Psi^* e^{-2\beta E(\mathbf{p})} e^{3i\theta} + e^{-3\beta E(\mathbf{p})} e^{3i\theta} \right] \\ + \frac{1}{\beta} \ln \left[1 + 3\Psi^* e^{-\beta E(\mathbf{p})} + 3\Psi e^{-2\beta E(\mathbf{p})} e^{-3i\theta} + e^{-3\beta E(\mathbf{p})} e^{-3i\theta} \right] + U_M + \mathcal{U}$$

 $E(\mathbf{p}) = \sqrt{\mathbf{p}^2 + M^2}, \ \sigma = \langle \bar{q}q \rangle, \qquad \Sigma_{\mathrm{s}} = -2G_{\mathrm{s}}\sigma, \qquad U_{\mathrm{M}} = G_{\mathrm{s}}\sigma^2, \ M = m_0 + \Sigma_{\mathrm{s}}.$

extended Z₃ trans. $\theta \to \theta + 2\pi k/3, \ \Phi(\theta) \to \Phi(\theta)e^{-i2\pi k/3}$ 修正版Polyakovループ $\Psi \equiv e^{i\theta} \Phi \quad \theta \to \theta + 2\pi k/3, \ \Psi(\theta) \to \Psi(\theta)$ $\Omega(\theta) = \Omega(\Psi(\theta), \Psi(\theta)^*, e^{3i\theta})$ Extended Z₃ inv.

Deconfinement in pure gauge

- At $T=T_c$, $\Phi(T)$ jumps from 0 to finite value.
- At low temperature, phase of Φ can not be defined since $\Phi=0$.
- At high temperature, phase ϕ of Φ can be defined since $| \Phi | > 0$.

 $\phi = 2k/3$ (k=0,1,2)

RW transition

- θ -even quantity has a cusp at T>T_{RW}, $\theta = (2k+1)\pi/3$ (k integer), while θ -odd quantity is discontinuous there.
- At high temperature, there are three continuous solutions with different phases of Polyakov-loop.
- One solution is transformed into the other solutions by Z_3 transformation.

Phase diagram

Charge conjugation symmety

- At $\Theta = k \pi / 3$, Ω is invariant under $\Psi \Leftrightarrow \Psi *$ (or $\psi \Leftrightarrow -\psi$).
- C-symmetry is preserved if k is even, but broken if k is odd (RW).
- Θ -odd quantities such as ψ or n are order parameters.
- Θ -even quantities has a cusp.

On RW line, low T

On RW line, near T_E

On RW line, high temperature

At $\mu = 0$, low temperature

At $\mu = 0$, near T_E and T_C

μ =0, high temperature

Dashen mechanism

• CP violation in θ vacuum. Dashen, Phys. Rev. D3, 1879(1971)

NJL version Boer and Boomsma, Phys. Rev. D78,054027 (2008)

Θ-term in two-flavor NJL

$$L_{NJL} = \psi (i\gamma^{\mu}\partial_{\mu} - m_0 + \gamma_0\mu)\psi + L_4 + L_{\theta}$$
$$L_4 = (1 - c)G[(\overline{\psi}\tau_a\psi)^2 + (\overline{\psi}\tau_a i\gamma_5\psi)^2]$$

$$L_{\theta} = cG \det(\psi_R \psi_L) + H.c.$$
$$\times e^{i\theta}$$

P violation at large c

• At $\theta = \pi$, there is P symmetry. However, If c is greater than c_{criti} , the P symmetry is spontaneously broken. An order parameter, η , is finite and discontinuous there.

$$\eta = \langle \psi i \gamma_5 \psi \rangle \neq 0$$

Dashen vs. RW

	Dashen	RW
Symmetry	Ρ	С
Condition	At large c	At high T
Order parameter	η	n _q
Ω	has a cusp	has a cusp
energy	low	high
origin	anomaly instanton	term with e ^{3i θ}

Summary

- At high temperature, there are three continuous solutions.
- At low temperature, only one continuous solutions.
- RW transition: transition among solutions with different phases of Polyakov loop.
- On RW line, susceptibilities of θ -odd quantities diverge, while those of θ -even quantities do not.
- At μ =0, there is no phase transiton, but, the rapid change of Polyakov loop appears as a remnant of RW transition.

See

Y. Sakai, H.K., M. Yahiro arXiv:0908.3088
QCD phase diagram at imaginary baryon and isospin chemical potentials

isospin論文 Fig. 5-(a)

isospin論文 Fig. 5-(b)

isospin論文 Fig. 6-(a)

isospin論文 Fig. 6-(b)

isospin論文 Fig. 8-(a)

isospin論文 Fig. 8-(b)

isospin論文 Fig. 8-(c)

isospin論文 Fig. 8-(d)

isospin論文 Fig. 9-(a)

RW論文 Fig. 9-(a)

RW論文 Fig. 9-(a)

RW論文 Fig. 9-(c)

