励起モードの性質から探る有限温度QCD ~クォーク励起スペクトルの解析を中心に~

北沢正清 (阪大)

Outline:

1, Overview of (lattice) QCD @ *T*>0

2, Perturbative study of fermion spectrum at high T

3. Lattice study of quarks at nonzero T

MK, Kunihiro, Nemoto, PLB631,157(05); PLB633,269(06); PTP117,103(07); NJL Karsch, MK, PLB658,45(07); MK, et al. PRD77,045034(08); Karsch, MK, PRD80,056001(09); MK, et al. in progress.

Yukawa Lattice

Quantum Chromodynamics (QCD)

Phase Diagram of QCD

Phase Diagram of QCD

simulations

Lattice

Region explored in this talk

- fate of hadronic modes above T_c
 - charmonia: signal of realization of QGP phasesoft modes associated with chiral transition
- Other modes : diquarks, glueball, ...
 Fundamental DoF in QCD: quarks and gluons

Lattice QCD at Nonzero T

• basic formulae:

$$Z = \operatorname{Tre}^{-\beta H} = \sum_{n} \left\langle \phi_{n} \left| e^{-\beta H} \right| \phi_{n} \right\rangle = \int DU D\psi D\overline{\psi} \exp(-S_{G} - S_{F})$$
$$\left\langle O \right\rangle = \frac{1}{Z} \operatorname{Tr} \left[O e^{-\beta H} \right]$$

Lattice QCD at Nonzero T

basic formulae:

$$Z = \operatorname{Tre}^{-\beta H} = \sum_{n} \left\langle \phi_{n} \left| e^{-\beta H} \right| \phi_{n} \right\rangle = \int DU D\psi D\overline{\psi} \exp(-S_{G} - S_{F})$$
$$\left\langle O \right\rangle = \frac{1}{Z} \operatorname{Tr} \left[O e^{-\beta H} \right]$$

•Bulk thermodynamics: $\varepsilon = \frac{T^2}{V} \frac{\partial \ln Z}{\partial T}$, etc. $\langle S_E \rangle = -\partial \ln Z / \partial \beta$

•Expectation values: fluctuations, heavy quark potential, etc.

•Euclidean correlators:

$$D(\tau, \mathbf{x}) = \frac{1}{Z} \operatorname{Tr} \Big[\operatorname{T}_{\tau} O(\tau, x) O(0, 0) e^{-\beta H} \Big]$$

$$\longrightarrow D(i\omega_n, \mathbf{p}) \bigoplus D^R(\omega, \mathbf{p}) \bigoplus \operatorname{spectral function}$$
F.T. 解析接続 (dynamical properties)

Quenched Approximation

•neglect quark-antiquark loops

•Quenched approx. in thermodynamics \rightarrow pure glue — $100^3 x 25$ •Smaller m_q , heavier calculation. •Simulations with physical mass have just started.

Bulk Thermodynamics

rapid increase of ε at *T*~190MeV but no discontinuity \rightarrow crossover \iff 1st order for massless 3-flavor

deviation from ideal gas behavior ($\varepsilon = 3p$)

Blaizot, Iancu, Rebhan, '99 1.8 p/T⁴ 1.6 HTL 1.4 1.2 1.0 (1x1)0.8 RG $(1x2)_{tad}$ 0.6 0.4 0.2 T/T 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

> Pressure is well reproduced by perturbation theory for $T>3\sim4T_c$

Fluctuations & Higher Order Moments

• Expectation values of operator *O*: $\langle O \rangle = \frac{1}{Z} \operatorname{Tr} \left[O e^{-\beta H} \right]$

ex.)
$$c_2 \equiv \left\langle \delta N_B^2 \right\rangle = \left\langle N_B^2 \right\rangle - \left\langle N_B \right\rangle^2 = -T \partial^2 \Omega / \partial \mu_B^2$$
 baryon # fluct.
 $c_4 \equiv \left\langle \delta N_B^4 \right\rangle - 3 \left\langle \delta N_B^2 \right\rangle^2 = -T \partial^4 \Omega / \partial \mu_B^4$, ...

Fluctuations & Higher Order Moments

• Expectation values of operator *O*:
$$\langle O \rangle = \frac{1}{Z} \operatorname{Tr} \left[O e^{-\beta H} \right]$$

ex.)
$$c_2 \equiv \left\langle \delta N_B^2 \right\rangle = \left\langle N_B^2 \right\rangle - \left\langle N_B \right\rangle^2 = -T \partial^2 \Omega / \partial \mu_B^2$$
 baryon # fluct.
 $c_4 \equiv \left\langle \delta N_B^4 \right\rangle - 3 \left\langle \delta N_B^2 \right\rangle^2 = -T \partial^4 \Omega / \partial \mu_B^4$, ...

cf.) 3rd moments also serves as good exp. signals. Asakawa, Ejiri, MK, '09

Extracting Spectral Functions

Extracting Spectral Functions

Lattice Studies on Spectral Properties for $T > T_c$

• Hadronic channels:

charmonia Asakawa, Hatsuda, '04 Datta, et al., Umeda, et al., Aarts, et al., Petreczky et al., ...
light quarks
baryons Asakawa, et al.,'03; Bielefeld group Asakawa, '08

• correlators of EM tensor $\rho_{12,12}(\omega, \mathbf{p}) = \operatorname{Im} \operatorname{F.T.} \left\langle \left[T_{12}(x), T_{12}(0) \right] \right\rangle \mathcal{G}(t) \, \square \, \operatorname{viscosity:} \eta = \lim_{\omega \to 0} \frac{\rho_{12,12}(\omega, \mathbf{0})}{\omega}$

with fitting ansatze Karsch, Wyld, '87; Nakamura, Sakai, '97,'04; Mayer, '07,'08

2, Perturbative Study of Fermion Spectrum at high T

Free Dirac Propagator

Quarks at Extremely High T

Klimov '82, Weldon '83 Braaten, Pisarski '89

•1-loop (g<<1) •Hard Thermal Loop approx. (p, ω , m_q <<T)

 $\Sigma(\omega, \mathbf{p}) = \underbrace{\mathbf{p}}_{\mathbf{p}} \sum S(\omega, \mathbf{p}) = \frac{1}{\omega \gamma_0 - \mathbf{p} \cdot \mathbf{\gamma} - \Sigma(\omega, \mathbf{p})}$

•Gauge independent spectrum

•2 collective excitations having a "thermal mass" ~ *gT*

•width $\sim g^2 T$

•The plasmino mode has a minimum at finite *p*.

Similar mass gap in gluon dispersion.Thermal mass emerges with any bosons.

Quarks at Extremely High T

•1-loop (*g*<<1)

Klimov '82, Weldon '83 Braaten, Pisarski '89

Physical Origin of m_T & Plasmino

analogy to Electron & Soft mode in SC

Effect of **precursory fluctuations** of SC on electrons above T_c

 \Rightarrow soft mode $\rightarrow + \rightarrow + \cdots$

Physical Origin of m_T & Plasmino

Weldon, '89 MK, *et al.*, '06

$$S_{\rm HTL}(\omega, \mathbf{p}) = \frac{\Lambda_{+}(\mathbf{p})\gamma^{0}}{\omega - p - \Sigma_{+}} + \frac{\Lambda_{-}(\mathbf{p})\gamma^{0}}{\omega + p - \Sigma_{-}}$$

= A quark is scattered by a gluon.

- A quark and a thermallyexcited anti-quark annihilate and produce a gluon.
 - The quark turns into the "**anti-quark hole**".

Quark Spectrum as a function of m_0

We know two gauge independent limits:

 $\rho(p,\omega) = \rho_{+}(p,\omega)\Lambda_{+}(\vec{p})\gamma^{0} + \rho_{-}(p,\omega)\Lambda_{-}(\vec{p})\gamma^{0}$

•How is the interpolating behavior? •How does the plasmino excitation emerge as $m_0 \rightarrow 0$?

Fermion Spectrum in Yukawa Models

massive fermion + massive scalar boson

•electrons at $T \sim m_e$

•heavy quarks in QGP

$$L = i\overline{\psi}(i\partial \partial - m_f - g\sigma)\psi + \frac{1}{2}(\partial_\mu\sigma\partial^\mu\sigma + m_b^2\sigma^2)$$

Model parameter : $g, m_{\rm f}, m_{\rm b}, (T)$

 $(1) m_{\rm f} > 0, m_{\rm b} = 0$

•massive fermions in gauge theories

1-loop approx.

Baym, Blaizot, Svetitsky, '92

(2) $m_{\rm f}=0, m_{\rm b}>0$

light quarks in the QGP phase coupled with massive bosonsexcitations in graphene

•leptons coupled with W and Z at $T \sim m_{W,Z}$

MK, Kunihiro, Nemoto, '06,'07 Boyanovsky, '06

Case1 : $m_{\rm f} > 0, m_{\rm b} = 0$ one-loop approx. • quark spectral function in 1-loop approx.: Spectral Function for g = 1, T = 115 • $m_f / T << 1$ $m_{\rm f}/T=0.01$ thermal mass $m_T = gT/4$ 0.1 • $m_f / T >> 1$ $\rho_{\scriptscriptstyle +}(\omega, \mathbf{p}=\mathbf{0})$ 10 single peak at $m_{\rm f}$ 0.3 0.45 0.8 5 •Two limits are connected continuously. •Plasmino peak disappears 0 as $m_{\rm f}/T$ becomes larger. 0.5 -0.5 0 ω/T

•Note: Qualitative result hardly changes with a variation of *g*, and in Yukawa models with PS, V, AV interactions, and in QED.

Case2 : $m_{\rm f}=0, m_{\rm b}>0$

- Three peak structure is formed at $T/m_b \sim 1$ as an interpolating behavior between single- and two-pole limits.
- Similar result is obtained even with Schwinger-Dyson approach.

Harada, Nemoto, '08

Case2 : *T* dependence for *p*=0

- Three peak structure is formed at $T/m_b \sim 1$ as an interpolating behavior between single- and two-pole limits.
- Similar result is obtained even with Schwinger-Dyson approach.

Harada, Nemoto, '08

Three-peak structure emerges.The peak around the origin is the sharpest.

Mitsutani, et al. '08

Higher Order Analysis

Quark decay width grows as gluon screening mass becomes heavier. Beraudo, Blaizot, et al. '09

3, Lattice Study of Quarks at nonzero *T*

Simulation Setup

Let's start exploring non-perturbative quark propagator!

quenched approximationLandau gauge fixing

•analyze *m*, *p*, and *T* dependences of numerical results.

		NEW!!	
Т	β	size	
$3T_c$	7.45	128 ³ x16	
		64 ³ x16	
		48 ³ x16	
	7.19	$48^{3}x12$	
$1.5T_c$	6.87	64 ³ x16	
		48 ³ x16	
	6.64	$48^{3}x12$	
$1.25T_c$	6.72	64 ³ x16	
		48 ³ x16	
$0.9T_c$	6.42	48 ³ x16	
$0.55T_c$	6.13	48 ³ x16	

Correlator and Spectral Function

• 2-pole ansatz works quite well. (χ^2 /dof.~1 in correlated fit.)

•Quark excitations would be good quasi-particles. •Gauge dependence of E_1 and E_2 should be small.

How Reliable is the 2-Pole Ansatz?

Check 1 fits with different data points N_{data}

Fitting results with different N_{data} = 5,7,9, and 11 coincide within statistical error.

Check 2 6-parameter fit with Gaussian width $\int_{-E_2}^{\Gamma_2} \int_{E_1}^{\Gamma_1} \int_{-E_2}^{1} \int_{E_1}^{\Gamma_1} \int_{-E_2}^{1} \int_{-E_$

Note: The above results are unchanged even with $N_{\sigma}=128$. χ^2 is large for heavy quarks; $\chi^2/dof > 10$ for charm quark.

•Limiting behaviors for $m_0 \rightarrow 0, m_0 \rightarrow \infty$ are as expected.

- •Quark propagator approaches the chiral symmetric one near $m_0=0$.
- • $E_2 > E_1$: qualitatively different from the 1-loop result.

• m_T/T is insensitive to T.

•The slope of E_2 and minimum of E_1 is much clearer at lower T.

 \implies 1-loop result might be realized for high *T*.

Charm Quark & J/ψ

κ from Datta et al. PRD69,094507(2004).

•Charm quark is free-quark like, rather than HTL. •The J/ψ peak in MEM exists above $2m_c$.

Charm Quark & J/ψ

κ from Datta et al. PRD69,094507(2004).

•Charm quark is free-quark like, rather than HTL. •The J/ψ peak in MEM exists above $2m_c$.

Finite Volume Effects

• Finite spatial volume \rightarrow discretization of momentum

*E*₂<*E*₁; consistent with the HTL result. *minimum of plasmino confirmed*!

Effect of Dynamical Quarks 1

Effect of Dynamical Quarks 2

•Another diagram in full QCD:

Summary

• Fermion spectrum at relativistic temperatures has a rich and complex quasi-particle properties.

- Quarks in quenched approximation acquires thermal mass $m_T \sim 0.7T$ even near T_c .
- Minimum of the plasmino dispersion is confirmed.
- Quark thermal mass has a strong spatial-volume dependence. We need much finer and larger lattice to clarify detailed quasiparticles properties of quarks.
- Are "quasi-particles" useful to analyze non-perturbative region of the QGP phase?

Below $T_{\rm c}$

 $C_{+}(\tau)$ for 48³x16 lattices

 $T/T_c = 3, 1.5, 1.25, 0.93, 0.55.$

Quark correlator below T_c

•is convex upward.
•indicates a negative norm.
•does not approach the chiral symm. one in the chiral limit.

