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1D Bose gas theory e

g
“ﬁ?gw Equilibrium 1D Bose gas experiments

- Total energy
- 1D Cloud Size
- Local Pair Correlations

I will describe briefly in this talk.

O-4%Q  Non-Equilibrium 1D Bose gas experiments
- the Quantum Newton's cradle
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Theory

Exactly solvable from weakly interacting
to strongly correlated regimes
Integrable system

Experiment

Better understanding of strongly correlated system
for condensed matter physics,
for atom entanglement schemes

Direct comparison to Theory

- Test ground for other (more complicated) correlated systems

fundamental properties
method to extract correlation properties

Process from Non-equilibrium states
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How to make strongly correlated system
with a dilute gas.....
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1D Bose gases with infinite
hard core interactions

Lewi Tonks, 1936: Eq. of state of a 1D
classical gas of hard spheres

Marvin Girardeau, 1960: 1D Bose gases
with infinite hard core repulsion

In 1D, if no two single particle wavefunctions overlap
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1D Bose gases with variable point-
like Interactions

I Elliot Lieb and Werner Liniger, 1963: Exact

XG = solutions for 1D Bose gases with arbitrary 4(z)
AW interactions
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3D Bose Gas Cartoons
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1D Bose atomic gases

Maxim Olshanii, 1998: Adaptation to real atoms
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asp = 3D scattering length
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Optical Lattices

Calculable, versatile atom traps

U,c < Intensity

Far from resonance,

no light scattering
1D Bose gases
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Bundles of 1D Systems

detuning
3.2THz

wy~ 600 um

up to 85E,...

Blue-detuned Lattice
minimizes
CCD spontaneous emission

For 1D: negligible tunneling; W

all energies <« hw | Recall: yT when a,d or n,5l

Independently adjust
longitudinal and transverse

Trapping

So yT when the lattice power T
or the dipole trap power



Expansion in the 1D tubes
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Family of curves parameterized
by y Kinoshita, Wenger.,

DSW, Science 305,
2 1125 (2004)
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Pair (Two-Particle) Correlations

/ Thermal bosons
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2)(0
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Local Pair Correlations
=0 for 3D Fermions

=? for 1D Bosons



Normalized Local Pair Correlations

By photo-association Theory: Gangardt & Shiyapnikov, PRL 90 010401 (2003)

9@ of the Expt: Kinoshita, Wenger, DSW, PRL 95 190406 (2005)
3DBECisO'8+ - S
1 0.7
06k + f Strong coupling
s H' regime
9(2) 0.5t Pauli exclusion .
5 \ Fermionized
0.4 F Ty for Bosons Bosons |
" 3N
02" N | g, higher
Cr LN order
01rL ¥y g, | correlation
- N | | also
Weak coupling0 3 1 3 10  decreases
regime Q/eff
o, TSI NN NN



Duality in 1D systems

Two-particle relative wavefunctions

Bosons Fermions
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Summary (1)

= Experiments with eqgui/ibrium 1D Bose gases across coupling
regimes: total energy; cloud lengths, momentum
distributions, local pair correlations

Experiments agree with the exact 1D Bose gas theory, from
Thomas-Fermi to Tonks-Girardeau. 1D systems are a test
bed for modeling condensed matter using cold atoms.

Other tests of 1D Bose gas theory : NIST(Gaithersburg), Zurich, Mainz

What happens when a 1D Bose gas is put
info a Non-Equilibrium state ?

Does it thermalize ?



Collisions in 1D
@ @

For identical particles, reflection looks just like transmission |

9 Two-body collisions between
distinct bosons cannot change
their momentum distribution.

But, the momentum distribution of a freely expanding 1D
Bose gas does change, in both the TF and TG limits.
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Does a Real 1D Gas Thermalize?

1D Bose gases with & -fn interactions are
integrable systems = they do not:
ergodically sample phase space
=~ become chaotic ®eo
= thermalize Pa: Po: Pc === p, py,, P,

Thermalization in a real 1D Bose gas has been a
somewhat open question.

Do imperfectly & -fn interactions lift integrability
enough to allow the atoms to thermalize?
Do longitudinal potentials matter?

Procedure: take the 1D gas out of equilibrium and see
how it evolves.



Creating Non-Equlibrium
Distributions
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1 standing
wave pulse
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2 standing
wave pulses

Wang, et al., PRL 94, 090405 (2005)
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Harmonic Trap Motion

A classical Newton's cradle

We make thousands of parallel quantum Newton's cradles,

each with 50-300 oscillaTing atoms. o———o
s
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1D Evolution in a Harmonic Trap

Kinoshita, Wenger, Weiss

Position (u« m) Nature 440, 900 (2006)
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Dephased Momentum
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Dephased Momentum
1st cycle average DlSTrlbUTlOnS
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Negligible Thermalization

Projected curves

and actual curves
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This many-body 1D system
is nearly integrable.
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A New Type of Experiment : Direct Control of Non-Integrability



What happens in 3D?

Thermalization occurs in ~3 collisions.
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These collisions occur well above the Landau
critical velocity for the 3D BEC.



How many collisions have
occurred ?

N, . collisions per cycle. .

R=(2ka;p)? > for 2hk collisions

Olshanii, PRL 81,
938 (1998)




Transmission coefficient, 7
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Olshanii, PRL 81,938
(1998)



How many collisions have
occurred ?

N, . collisions per cycle. .

R=(2ka;p)2 :?2 for 2hk collisions
Olshanii, PRL 81,

We set lower limits to the 938 (1998)
number of reflections required

ol %‘iher‘mali zation
N >710
\

>9600 >>3

Lack of thermalization

This many-body 1D system
> >2300 is nearly integrable.




Is there a non-integrability
threshold for thermalization?

The classical KAM theorem shows that if a non-integrable
system is sufficiently close to integrable, it will not
ergodically sample phase space.

Is there a quantum mechanical analog?
Procedure:

controllably lift integrability and measure thermalization.

Ways to lift integrability
Allow tunneling among tubes (1D = 2D and 3D behavior);
Finite range 1D interactions; Add axial potentials




Optical thickness

Making 1D gases thermalize
Top view
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Thermalizc%rion in a 2D array of tubes
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Is there a threshold?

0.025

(per collision)
o
o

Thermalization Rate

0.02 [

1= 0.015 |

0.005 |

instrumental

4 €—

resolution

Tunneling Amplitude (nk) oc € 0

The experiment says "maybe”.



Summary (2)

= Non-equilibrium 1D Bose gases:
the quantum Newton's cradle

Independent 1D Bose gases do not thermalize |

Weakly coupled 1D Bose gases do thermalize |
What is their final state ?

New tools to control non-integrability.



Stories After our Experiments......

Do Integral Systems Relax ?

Approach to a Thermal Equilibrium

It will ergodically sample the entire phase space (E = const.)

Initial state




Integrals of Motions (conserved quantities) other than

the energy strongly restrict the sampling regions.

Integrable systems never reach a thermal equilibrium
(too many constrains)

However, they may relax to a steady state
(not a thermal equilibrium, but something else)



Maximizing Entropy S = kzTr[pIn(1/p)]

Rigol, Dunjko, Yurovsky and Olshanii,
PRL, 98, 050405 (2007)

Grand Canonical Distribution
——

For Integrable system

Maximize entropy S, subject to
the constrains imposed by

a full set of conserved quantities.

Generalized Gibbs ensemble with
many Lagrange multipliers.

Thermal equilibrium
p=Zlexp [— (H - pﬁ-’b) /F:.ET}
Z—Tr {exp [— (H _ p;“';.-"b) ,flch] }

E=Tr {H,ﬁ}  Ny=Tt {ﬁrbﬁ}
Constrained equilibrium

Jra.: == Zc_l exp | — Z }"ﬂtjﬂl

Zcz'Tl‘{E}Zp _Z}'lmfﬂt }

m

(Im)(t = 0) = Tr { [ }



In 1D system,

o= ==

Discrete Momentum
Sets are created by
Periodic Potentials.

Momentum distribution, f(k)

w0

Remove Potentials
(Integrable system)
Follow Time Evolution
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Relax to a steady state, but not
a thermal equilibrium.

“Memory”’ of initial states is left.

Rigol, Dunjko, Yurovsky and Olshanii,
PRL, 98, 050405 (2007)



Non-Equilibrium Coherence Dynamics
In One-Dimensional Bose Gases

Trap

1D Bose Gas

Coherently Splitting on Atom Chip

Split

Just after splitting,

very small uncertainty

in relative phase 3
(= Highly Non-Equilibrium)
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Hofferberth, Lesanovsky, Ficher, Schumm, and Schmiedmayer,
Nature 449, 324(2007)
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Normalized Local Pair Correlations
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“Breakdown of Integrability due to 3-body collisions”
Mazets, Schumm and Schmiedmayer, PRL, 100, 210403 (2008)



Summary (3)

Understanding of Non-Equilibrium Dynamics is very important
for Condensed Matter Physics and Statistical Physics

Integrable System + Perturbation to control dynamics

1D Bosons

1D Fermions (p-wave of Hard Core particles)
1/r2 interacting Gas (Calogero and Sutherland)
Fermions on a Lattice (Fermi and Habbard)

Non-Integrable system, but some constrains
what a kind of constrains, magnitude

how to lift integrability

guenched by suddenly changing parameters

Cold Atom Experiments provide nice stages
to study non-equilibrium dynamics.






