A novel spectral broadening from vector－axial－vector mixing in dense matter

原田正康（名古屋大学）

＠基研研究会「熱場の量子論とその応用」
 （2009年9月3日～5日）

```
based on
    M.H. and C.Sasaki, arXiv:0902.3608
see also
    M.H., C.Sasaki and W.Weise, Phys. Rev. D 78, 114003 (2008)
    M.H. and C.Sasaki, PRD74, 114006 (2006)
```


One of the Interesting problems of QCD

Origin of Mass $=0$ ark condensate

$$
\langle\bar{q} q\rangle \neq 0
$$

Spontaneous Chiral Symmetry Breaking

\star QCD under extreme conditions

- Hot and/or Dense QCD
- large flavor QCD

Chiral symmetry restoration

$$
\begin{aligned}
& \qquad\langle\bar{q} q\rangle \neq 0 \Rightarrow\langle\bar{q} q\rangle=0 \\
& \mathbf{T}_{\text {critical }} \sim \mathbf{1 7 0} \mathbf{- \mathbf { 2 0 0 } \mathbf { M e V }} \\
& \boldsymbol{\rho}_{\text {critical }} \sim \text { a few times of normal nuclear matter density } \\
& \mathbf{N f}_{\text {critical }} \sim \mathbf{5 - 1 2} \text { (still asymptotically free) }
\end{aligned}
$$

Change of Hadron masses?

$\underset{\lambda}{A}$ Dropping mass of hadrons

Masses of mesons become lighter due to chiral restoration

© NJL model T.Hatsuda and T.Kunihiro, PLB185, 304 (1987)

$$
\frac{m_{\sigma}^{*}}{m_{\sigma}} \underset{T \rightarrow T_{c}}{\longrightarrow} 0
$$

(o) Brown-Rho scaling

$$
\text { G.E.Brown and M.Rho, PRL 66, } 2720 \text { (1991) }
$$

$$
\frac{m_{\sigma}^{*}}{m_{\sigma}} \sim \frac{m_{N}^{*}}{m_{N}} \sim \frac{m_{\rho}^{*}}{m_{\rho}} \sim \frac{m_{\omega}^{*}}{m_{\omega}} \sim \frac{\langle\bar{q} q\rangle^{*}}{\langle\bar{q} q\rangle} \rightarrow 0 \quad \text { for } \mathrm{T} \rightarrow \mathrm{~T}_{\text {critical }}
$$

(0) QCD sum rule : T.Hatsuda, Quark Matter 91 [NPA544, 27 (1992)]

$$
\frac{m_{\rho}^{*}}{m_{\rho}} \sim\left(\frac{\langle\bar{q} q\rangle_{T}^{*}}{\langle\bar{q} q}\right)^{1 / 3} \underset{T \rightarrow T_{c}}{\rightarrow} 0 \quad \frac{m_{\rho}^{*}}{m_{\rho}} \sim \frac{\langle\bar{q} q\rangle_{\rho}^{*}}{\langle\bar{q} q\rangle} \underset{\rho \rightarrow \rho_{c}}{\rightarrow} 0
$$

© Vector Manifestation
M.H. and K.Yamawaki, PRL86, 757 (2001)
M.H. and C.Sasaki, PLB537, 280 (2002)
M.H., Y.Kim and M.Rho, PRD66, 016003 (2002)

$$
m_{\rho} \sim\langle\bar{q} q\rangle^{\alpha} \rightarrow 0
$$

A Di-lepton data consistent with dropping mass

Analysis : R.Rapp and J.Wambach, ANP 25,1 (2000) Exp: G.Agakishiev et al. [CERES], PRL75, 1272 (1995)

© KEK-PS/E325 experiment

$$
m_{\rho}=m_{0}\left(1-\alpha \rho / \rho_{0}\right)
$$

$$
\text { for } \alpha=0.09
$$

K.Ozawa et al., PRL86, 5019 (2001)
M.Naruki et al., PRL96, 092301 (2006)
R.Muto et al., PRL98, 042501 (2007)
F.Sakuma et al., PRL98, 152302 (2007)

$$
\mathrm{m}_{\phi}=\mathrm{m}_{0}\left(1-\alpha \rho \rho \rho_{0}\left(\operatorname{coveve}^{2}\right)\right.
$$

$$
\text { for } \alpha=0.03
$$

A Di-lepton data (NA60) consistent with NO dropping mass

H.v.Hees and R.Rapp, NPA806, 339 (2008)

J.Ruppert, C.Gale, T.Renk, P.Lichard and J.I.Kapusta, PRL100, 162301 (2008)

ψ_{*} In this talk

- Effect of the Axial-vector Meson on the vector spectrum in dense baryonic matter
[M.H. and C.Sasaki, arXiv:0902.3608]
. . a background (many body effects of hadrons) needed for the determination of mass shift
\star Outline

1. Introduction
2. V-A mixing in hot matter (as a comparison)
3. V-A mixing in dense baryonic matter
4. Summary
5. V-A mixing in hot medium
\rightarrow modification of the vector spectral function
[M.H., C.Sasaki and W.Weise, Phys. Rev. D 78, 114003 (2008)]

enhancement at $s^{1 / 2}=m_{a}-m_{\pi}$
cusp structure at $s^{1 / 2}=m_{a}+m_{\pi}$

3. V-A mixing in dense baryonic matter

[M.H. and C.Sasaki, arXiv:0902.3608]
© V-A mixing from the current algebra analysis in the low density region
B.Krippa, PLB427 (1998)
$G_{V}^{\mu \nu}\left(n_{B}\right)=(1-\varepsilon) G_{V}^{\mu \nu}(0)+\varepsilon G_{A}^{\mu \nu}(0)$
$G_{A}^{\mu \nu}\left(n_{B}\right)=(1-\varepsilon) G_{A}^{\mu \nu}(0)+\varepsilon G_{V}^{\mu N}(0)$

$$
\varepsilon=4 n_{B} \frac{\sigma_{\pi N}}{3 f_{\pi}^{2} m_{\pi}^{2}}
$$

- This is obtained at loop level in a field theoretic sense.
- Is there more direct V-A mixing at Lagrangian level ?
such as £ ~ $V_{\mu} A^{\mu}$?
... impossible in hot matter due to parity and charge conjugation invariance
... possible in dense baryonic matter since charge conjugation is violated but be careful since parity is not violated

H A possible V-A mixing term

violates charge conjugation but conserves parity

S.K.Domokos, J.A.Harvey, PRL99 (2007)

$$
\mathcal{L}_{\mathrm{mix}}=C \epsilon^{0 \nu \lambda \sigma}\left[\partial_{\nu} V_{\lambda} \cdot A_{\sigma}+\partial_{\nu} A_{\lambda} \cdot V_{\sigma}\right]
$$

generates a mixing between transverse ρ and A_{1}
ex: for $p^{\mu}=\left(p_{0}, 0,0, p\right)$
no mixing between $\mathrm{V}_{0,3}$ and $\mathrm{A}_{0,3}$ (longitudinal modes)
mixing between V_{1} and $\mathrm{A}_{2}, \mathrm{~V}_{2}$ and A_{1} (transverse modes)
(O) Dispersion relations for transverse ρ and A_{1}

$$
p_{0}^{2}-\bar{p}^{2}=\frac{1}{2}\left[m_{\rho}^{2}+m_{a_{1}}^{2} \pm \sqrt{\left(m_{a_{1}}^{2}-m_{\rho}^{2}\right)^{2}+16 C^{2} \bar{p}^{2}}\right]
$$

+ sign \cdots transverse $A_{1}\left[p_{0}=m_{a 1}\right.$ at rest $\left.(p=0)\right]$
- sign \cdots transverse $\rho \quad\left[p_{0}=m_{\rho}\right.$ at rest $\left.(p=0)\right]$

$\not \approx$ Determination of mixing strength C

© An estimation from ω dominance

- $\rho \mathrm{A}_{1} \omega$ interaction term

$$
\mathcal{L}_{\omega \rho a_{1}}=g_{\omega \rho a_{1}} \varepsilon^{\mu \nu \lambda \sigma} \omega_{\mu}\left[\partial_{\nu} V_{\lambda} \cdot A_{\sigma}+\partial_{\nu} A_{\lambda} \cdot V_{\sigma}\right]
$$

$$
\text { an empirical value : } g_{\omega \rho a_{1}} \simeq 3 \quad \text { (cf: N.Kaiser,U.G.Meissner, NPA519,671(1990)) }
$$

- ω NN interaction provides the ω condensation in dense baryonic matter

$$
\begin{aligned}
& \mathcal{L}_{\omega N N}=-g_{\omega N N} \omega_{\mu} \bar{N} \gamma^{\mu} N \Rightarrow\left\langle\omega_{0}\right\rangle=\frac{g_{\omega N N}}{m_{\omega}^{2}} n_{B} \\
& \quad \text { an empirical value : } g_{\omega N N} \simeq 18
\end{aligned}
$$

- Mixing term from ω dominance

$$
\begin{array}{r}
\mathcal{L}_{\operatorname{mix}}=g_{\omega \rho a_{1}}\left\langle\omega_{0}\right\rangle \varepsilon^{0 v \lambda \sigma}\left[\partial_{\nu} V_{\lambda} \cdot A_{\sigma}+\partial_{\nu} A_{\lambda} \cdot V_{\sigma}\right] \\
C_{\omega}=g_{\omega \rho a_{1}}\left\langle\omega_{0}\right\rangle=\frac{g_{\omega \rho a_{1}} g_{\omega N N}}{m_{\omega}^{2}} n_{B} \simeq 0.1 \mathrm{GeV} \\
\\
\text { at } n_{B}=n_{0} \text { (normal nuclear matter) }
\end{array}
$$

© An estimation in a holographic QCD (AdS/QCD) model

- Infinite tower of vector mesons in AdS/QCD models

$$
\omega, \omega^{\prime}, \omega^{\prime \prime}, \ldots
$$

- These infinite ω mesons can generate V-A mixing

$$
C_{\mathrm{AdS} / \mathrm{QCD}}=C_{\omega}+C_{\omega^{\prime}}+C_{\omega^{\prime \prime}}+\cdots
$$

- This summation was done in an AdS/QCD model
S.K.Domokos, J.A.Harvey, PRL99 (2007)

$$
C_{\mathrm{AdS} / \mathrm{QCD}} \simeq 1 \mathrm{GeV} \times \frac{n_{B}}{n_{0}}
$$

n_{0} : normal nuclear matter density

\nrightarrow Dispersion relations

$$
p_{0}^{2}-\bar{p}^{2}=\frac{1}{2}\left[m_{\rho}^{2}+m_{a_{1}}^{2} \pm \sqrt{\left(m_{a_{1}}^{2}-m_{\rho}^{2}\right)^{2}+16 C^{2} \bar{p}^{2}}\right]
$$

- $C=0.5 \mathrm{GeV}$: small changes for ρ and A_{1} mesons
- $\mathrm{C}=1 \mathrm{GeV}$: small change for A_{1} meson substantial change in ρ meson
- C $\sim 1.1 \mathrm{GeV}: \mathrm{p}_{0}{ }^{2}<0$ for $\rho \rightarrow$ vector meson condensation? [S.K.Domokos, J.A.Harvey, PRL99 (2007)]

\star Integrated vector spectrum for $\mathbf{C = 1} \mathbf{~ G e V}$

© low p region

- longitudinal mode : ordinary ρ peak
- transverse mode : an enhancement for $\sqrt{ } \mathrm{s}<\mathrm{m}_{\rho}$ and no clear ρ peak a gentle peak corresponding to A_{1} meson
- spin average ($\left.\operatorname{lm} G_{L}+2 \operatorname{lm} G_{T}\right) / 3: 2$ peaks corresponding to ρ and A_{1}
© high p region
- longitudinal mode : ordinary ρ peak
- transverse mode : 2 small bumps and a gentle A_{1} peak
- spin averaged : 2 peaks for ρ and A_{1}; Broadening of ρ peak

$\stackrel{A}{\star}$ Di-lepton spectrum at $T=0.1 \mathrm{GeV}$ with $C=1 \mathrm{GeV}$

- A large enhancement in low $\sqrt{ } \mathrm{s}$ region
\rightarrow result in a strong spectral broadening
. . : might be observed in with low-momentum binning at J-PARC, GSI/FAIR and RHIC low-energy running

\star Effects of V-A mixing for ω and ϕ mesons

- Assumption of nonet structure
\rightarrow common mixing strength C for $\rho-A_{1}, \omega-f_{1}(1285)$ and $\phi-f_{1}(1420)$

$$
\mathcal{L}_{\text {mix }}=C \epsilon^{0 \nu \lambda \sigma}\left[\partial_{\nu} V_{\lambda} \cdot A_{\sigma}+\partial_{\nu} A_{\lambda} \cdot V_{\sigma}\right]
$$

- Vector current correlator

$$
G_{V}^{L}=\sum_{V=\rho, \omega, \phi} \frac{-s\left(g_{V} / m_{V}\right)^{2}}{D_{V}}, \quad G_{V}^{T}=\sum_{V=\rho, \omega, \phi} \frac{\left(g_{V} / m_{V}^{2}\right)\left(-s D_{A}+4 C^{2} \bar{p}^{2}\right)}{D_{V} D_{A}-4 C^{2} \bar{p}^{2}}
$$

note : we used the following meson widths

$$
\begin{array}{ll}
\Gamma_{\omega}=\Theta\left(s-\left(3 m_{\pi}\right)^{2}\right) 8.49 \mathrm{MeV}, & \Gamma_{f_{1}(1285)}=\Theta\left(s-\left(4 m_{\pi}\right)^{2}\right) 24.3 \mathrm{MeV} \\
\Gamma_{\phi}=\Theta\left(s-\left(2 m_{K}\right)^{2}\right) 4.26 \mathrm{MeV}, & \Gamma_{f_{1}(1420)}=\Theta\left(s-\left(m_{\pi}+2 m_{K}\right)^{2}\right) 54.9 \mathrm{MeV}
\end{array}
$$

© ϕ meson spectral function
spin averaged, integrated over $0<p<1 \mathrm{GeV}$

- $\mathrm{C}=1 \mathrm{GeV}$: suppression of ϕ peak (broadening)
- $\mathrm{C}=0.3 \mathrm{GeV}$: suppression for $\sqrt{\mathrm{s}}>\mathrm{m}_{\phi}$ enhancement for $\sqrt{ } \mathrm{s}<\mathrm{m}_{\phi}$
\mathcal{H} Integrated rate with ρ, ω and ϕ mesons for $C=0.3,0.5,1 \mathrm{GeV}$

(at T $=0.1 \mathrm{GeV}$)
- An enhancement for $\sqrt{s}<\mathrm{m}_{\rho}, \mathrm{m}_{\omega}$ (reduced for decreasing C)
- An enhancement for $\sqrt{ } \mathrm{s}<\mathrm{m}_{\phi}$ from ϕ - $\mathrm{f}_{1}(1420)$ mixing
\rightarrow a broadening of ϕ width

4. Summary
© V-A mixing (violating charge conjugation) can exist in dense baryonic matter

$$
\mathcal{L}_{\text {mix }}=C \epsilon^{0 \nu \lambda \sigma}\left[\partial_{\nu} V_{\lambda} \cdot A_{\sigma}+\partial_{\nu} A_{\lambda} \cdot V_{\sigma}\right]
$$

$$
\text { for } \rho-A_{1}, \omega-f_{1}(1285) \text { and } \phi-f_{1}(1420)
$$

$\rightarrow \cdot$ modification of dispersion relations

- change in vector spectral function (broadening)
© Large C ? : $C_{\omega} \simeq 0.1 \mathrm{GeV}$ or $C_{\mathrm{AdS} / \mathrm{QCD}} \simeq 1 \mathrm{GeV}$?
- If $\mathrm{C}=0.1 \mathrm{GeV}$, then this mixing will be irrelevant.
- If $\mathrm{C}>0.3 \mathrm{GeV}$, then this mixing will be important.
- We need more analysis for estimation.

The End

