Multiple gluon production at high energy as reaction-diffusion dynamics

Kazunori Itakura

At the TQFT workshop
24th August, 2006
Plan

- Introduction
 -- Proton at high energy
 -- Color Glass Condensate (CGC)

- Multiple gluon production

- The QCD evolution equation
 -- The Balitsky-Kovchegov equation
 -- Reaction-diffusion dynamics (F-KPP equation)

- Effects of fluctuation
 -- Fluctuation & Stochastic F-KPP equation
 -- Back to the saturation physics

- Summary
Introduction (1/2)

At very high energy, a fast moving proton looks as a **dense gluon** system!

Deep inelastic scattering (DIS) of electron off proton

→ Internal structure of a proton

\[
\frac{1}{Q^2} \approx \frac{1}{(Q^2 + W^2)}
\]

Gluons are dominant at small-\(x\) = high energies

\[x \sim Q^2/(Q^2 + W^2)\]
High-energy limit of QCD is the Color Glass Condensate (CGC)!!

Named by Iancu, Leonidov, & McLerran (2000)

Color: A matter made of gluons with colors.
Glass: Almost “frozen” random color source creates gluon fields
Condensate: High density. Occupation number $\sim O(1/\alpha_s)$

Saturation scale = typical transverse momentum of gluons

\rightarrow weak coupling $\alpha_s(Q_S) \ll 1$

Weakly interacting many body system of gluons (cf: QGP, CSC)

K. Itakura (KEK) Aug. 24th, 2006 at YITP
Strong and weak evidences (DIS)

Geometric scaling

[Stasto, Kwiecinski, Golec-Biernat 2001]

The γ^*-proton total cross section $\sigma(Q^2, x)$ becomes a function of only one variable $Q^2/Q_s^2(x)$ at small x. $Q_s^2(x) \sim 1/x^\lambda$.

x-dependence of Q_s is consistent with CGC

Structure function at small-x

$F_2(x, Q^2)$ Consistent with CGC picture

Red line : the CGC fit (Iancu, KI, Munier)
Blue line : BFKL w/o saturation

K. Itakura (KEK)
Aug. 24th, 2006 at YITP
Strong and weak evidences (RHIC)

Suppression of R_{dAu} **in RHIC d-Au collision at forward rapidity**

\[
R_{dAu} \equiv \frac{1}{N_{coll}} \frac{dN_{d+Au}}{dN_{p+p}} \frac{d^2 p_t d\eta}{d^2 p_t d\eta}
\]

When $R_{dAu} = 1$, d(p)-Au collision is just a superposition of pp collisions.

Enhanced due to multiple scattering

Suppressed due to CGC

d-Au collision at forward rapidity

Going to forward rapidity (large η) → Probing smaller x component of Au

K. Itakura (KEK) Aug. 24th, 2006 at YITP
Multiple gluon production
Gluon cascade (1/2)

BFKL evolution: multiple soft gluon production

Balitsky-Fadin-Kuraev-Lipatov

\[\frac{dn(Y)}{dY} \propto \kappa \ n(Y) \]

\[\kappa : \text{growth rate} \]

BFKL equation:
linear evolution → rapid growth → Unitarity violation!!
What is missing in the BFKL dynamics?

Rapid growth = “population explosion”
← feedback effect reduces the speed of growth

When the gluon density becomes high,
produced gluons start to interact with each other!

\[
\frac{dn(Y)}{dY} \propto \kappa n(Y) - \kappa n^2(Y)
\]

Logistic equation + transv. dep
→ Balitsky-Kovchegov eq.

\[g \rightarrow gg \text{ (increase)} \quad \text{vs} \quad gg \rightarrow g \text{ (recombination)} \]

rapid increase
saturation

Evolution becomes nonlinear → saturation
The QCD evolution equation
The Balitsky-Kovchegov equation

\[\partial_Y \langle T_{xy} \rangle = \frac{\bar{\alpha}}{2\pi} \int d^2 z \frac{(x - y)^2}{(x - z)^2(z - y)^2} \left[\langle T_{xz} \rangle + \langle T_{zy} \rangle - \langle T_{xy} \rangle - \langle T_{xz} \rangle \langle T_{zy} \rangle \right] \]

Consequences

- \(\langle T_{xy} \rangle_Y \): scattering amplitude of a color dipole \(\sim \) gluon number
- Derived from QCD in leading log accuracy \((\alpha_s \ln 1/x) \) in the mean-field approximation (cf the Balitsky equation)
- BFKL + non-linear term
 \[\rightarrow \langle T_{xy} \rangle_Y \text{ saturates (unitarizes) at fixed } b = (x+y)/2 : \langle T_{xy} \rangle_Y \leq 1 \]
- Saturation scale \(Q_s(Y) \) increases with rapidity \(Y : Q_s^2(Y) \sim e^{\lambda Y} \)
- Geometric Scaling
 \[\rightarrow \text{amplitude } \langle T_{xy} \rangle_Y \text{ is a function of } (x-y)Q_s(Y) \]
- Approximate scaling persists even outside of the CGC regime

\(Y \sim \ln s \) rapidity

K. Itakura (KEK) Aug. 24th, 2006 at YITP
Emerging picture

\[Q_S^2(x) \sim \frac{1}{x^\lambda} : \text{grows as } x \to 0 \]

\[Q_S^4(x)/\Lambda_{QCD}^2 \]

Higher energies \(\uparrow \)

1/x in log scale

Non-perturbative (Regge)

Extended scaling regime

CGC

Parton gas

Fine transverse resolution \(\rightarrow \)

\(Q^2 \) in log scale

\(\Lambda_{QCD}^2 \)

BFKL

BK

DGLAP

K. Itakura (KEK) Aug. 24th, 2006 at YITP
Within a reasonable approximation, the BK equation in momentum space is rewritten as the F-KPP equation (Fisher, Kolmogorov, Petrovsky, Piscounov)

$$\partial_t u = \partial_x^2 u + u - u^2$$

where $t \sim Y$, $x \sim \ln k_t^2$ and $u(t, x) \sim 1 - \langle T(k) \rangle_Y$.

FKPP = “reaction” + “diffusion”

Reaction: logistic growth ($g \rightarrow gg$, vs $gg \rightarrow g$)

Diffusion: expansion of stable region

\rightarrow **Traveling wave solution**

- **Wave front**: $x(t) = vt$ \rightarrow saturation scale
- **Translating solution**: $u(x-vt)$
 \rightarrow geometric scaling

Reinterpretation of the results from statistical physics
The Reaction-Diffusion dynamics

Dynamics in 1 dimension

Splitting \(A \to AA \) and merging \(AA \to A \) occur at each site

Diffusion: Hopping to the right and left

Equation for \(n(i) \): the number of particles at site \(i \)

mean-field approximation \(\to \) FKPP equation
Effects of fluctuation
1. The FKPP equation is \textit{not complete}: It is for \textit{an averaged number density in the continuum limit}

\[u(x,t) = \lim_{N \to \infty} \left\langle n_i(t)/N \right\rangle \]

and is valid when allowed number of particles \(N \) is \textit{quite large}.

2. \textbf{Fluctuation (discreteness)} becomes important when the number of particles are \textit{few}.

\(\rightarrow \) At the tail of a traveling wave: \(u(x,t) \sim 1/N \ll 1 \)

\(\rightarrow \) \textit{large effect}: Diffusion controls the propagation.

The velocity of a traveling wave is reduced.

(Linear growth does not work without “seeds”)

Derrida, Brunet
Effects of fluctuation → Stochastic FKPP equation

\[(\partial_t - \nabla^2)\phi - (\phi - \phi^2) - \sqrt{2(\phi - \phi^2)} N \cdot \eta(x, t) = 0\]

Gaussian noise \[\langle \eta(x, t)\eta(x', t') \rangle = \delta(x - x')\delta(t - t')\]

Consequences:
1. Front velocity becomes slow, and stochastic
2. But the shape of the traveling wave does not change for each event

→ The effects of fluctuation can be expressed by stochastic (Gaussian) front position

Enberg, et al.
Stochastic front position

Stochastic FKPP equation

\[
(\partial_x - \nabla^2)\varphi - (\varphi - \varphi^2) - \frac{\sqrt{2(\varphi - \varphi^2)}}{N \cdot \eta(x, t)} = 0
\]

Mechanism: (KI, in preparation)

1. **Stability analysis** of the FKPP equation
 - Dominant fluctuation around the traveling wave solution \(\varphi_0 \)
 - \textbf{zero mode} (due to translational invariance)

2. **This zero mode** couples to the external noise term
 - The front position \(\delta X(t) \) due to the noise is proportional to the noise

3. The front position behaves like a collective coordinate of the traveling wave solution.

K. Itakura (KEK)
Aug. 24th, 2006 at YITP
Back to saturation physics

1. Difference btw Balitsky and BK eqs. becomes significant when gluon (dipole) number is small (high transverse momentum).
 \[\langle T(r) \rangle_y \approx \alpha_s^2 \ n(r,Y) \ll \alpha_s^2 \]

2. Inclusion of full fluctuation replaces the F-KPP equation by the **stochastic** F-KPP equation.
 → Even the Balitsky equation must be modified so that it contains dipole splitting.
 → Pomeron loop

3. Saturation scale becomes **slowly increasing** due to diffusion at the edge, **stochastic variable** due to fluctuation term in sFKPP eq.

By Mueller, Shoshi, Iancu, Munier, Tryantafyllopoulos, Soyez, KI, ……

K. Itakura (KEK) Aug. 24th, 2006 at YITP
Summary

- At very high energy, a proton (in fact, any hadrons) looks as the Color Glass Condensate, a densely saturated gluonic system. This is a weakly interacting many body state.

- Its dynamics is essentially equivalent to the reaction-diffusion dynamics. The BK equation ~ the FKPP equation. Rich information from the statistical physics is available.

- In particular, the effects of fluctuation beyond the mean-field BK picture have been recognized to be significant in dilute regime (at high transverse momentum)

- Slowly-growing and stochastic saturation scale is obtained.
Theoretical framework for the CGC (1/2)

Effective theory of a fast moving hadron

Small x partons
mostly gluons

- Small longitudinal mom. p^+
- \rightarrow large LC energy E_{LC}
- \rightarrow short life time $\sim 1/E_{LC}$

Large x partons
mostly quarks

- Large longitudinal mom. p^+
- \rightarrow small LC energy E_{LC}
- \rightarrow long life time $\sim 1/E_{LC}$

$E_{LC} = \frac{p_\perp^2}{2p^+}$, $x = \frac{p^+}{p^+}$

Small-x gluons can be treated as classical radiation field created by static random color source on the transverse plane.

Stochastic Yang-Mills equation

\[
\left(D^\nu F_{\nu\mu}^a\right)^a = \delta^{\mu+} \rho^a(x^-, x_{\perp})
\]

Need average over random color source ρ

\rightarrow weight function $W_{x}[\rho]$

K. Itakura (KEK) Aug. 24th, 2006 at YITP
Theoretical framework for the CGC (2/2)

Renormalization group equation

$W_{x0}[^\rho]$ weight function for random source

$W_{x1}[^\rho]$ weight function for random source

Higher energy

$x_0 > x_1$

The JIMWLK equation

$(\text{Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner})$

$\frac{\partial W_y[^\rho]}{\partial Y} = \frac{1}{2} \frac{\delta^2}{\delta \rho \delta \rho} [W_y \chi] - \frac{\delta}{\delta \rho} [W_y \sigma], \quad Y = \ln \frac{1}{x_0}$

K. Itakura (KEK) Aug. 24th, 2006 at YITP
Mean-field picture

- **Gluon number ~ 2pt function of Wilson lines**
 \[V_x^+ = P e^{ig \int A^- dx^-} \]
 \[S_Y(x_\perp, y_\perp) = \frac{1}{Nc} \left\langle \text{tr}(V_x^+ V_y) \right\rangle_Y \]

- **Evolution equation for 2pt operator**
 contains 4pt function
 \[\left\langle \text{tr}(V_x^+ V_z) \cdot \text{tr}(V_z^+ V_y) \right\rangle_Y \]
 → **Mean-field approx.** : necessary to obtain a closed equation
 \[\text{tr}(V_x^+ V_z) = \left\langle \text{tr}(V_x^+ V_z) \right\rangle_Y + "fluctuation" \]

- **The Balitsky-Kovchegov equation**
 \[\left\langle T_{xy} \right\rangle_Y = 1 - \frac{1}{Nc} \left\langle \text{tr}(V_x^+ V_y) \right\rangle_Y \]
 \[\partial_Y \left\langle T_{xy} \right\rangle = \frac{\bar{\alpha}}{2\pi} \int d^2 z \frac{(x - y)^2}{(x - z)^2(z - y)^2} \left[\langle T_{xz} \rangle + \langle T_{zy} \rangle - \langle T_{xy} \rangle - \langle T_{xz} \rangle \langle T_{zy} \rangle \right] \]